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Finally, the Eureka Moment!
In 2004, the first reports of methane (CH4) in Mars’ atmosphere, 

by both Mars Express and ground-based observations, stirred up 
excitement in the scientific community [1,2]. These detections (at 
10 ppbv level) immediately raised questions regarding the origin of 
methane. On Mars, oxidants and UV radiation destroy atmospheric 
methane in approximately 300 yrs [3]. Therefore, the presence of 
atmospheric methane requires ongoing or recent methane emission. 
On Earth, methane is almost entirely of (live and fossil) biological 
origin, while abiotic sources, believed to be predominantly volcanic 
and/or hydrothermal, account for the rest (a few percent) of the total 
CH4 flux into the atmosphere [4]. The conventional understanding of 
Mars is in stark contrast: decades of exploration have not found life 
or active volcanism, although localized outgassing sources cannot be 
ruled out, and we know that past Martian volcanism until perhaps 
only a few million years ago had existed [5]. Consequently, a methane 
detection impacts Mars science and astrobiology in very fundamental 
ways. It turns the theoretical musing of possible life on Mars into a 
necessary investigation component for interpreting observational data. 
It elevates the possibility of hydrothermal activity on Mars, which can 
be habitable environments providing liquid water and redox energy to 
sustain life. Moreover, it compels new research directions to explore 
novel processes that can produce methane on Mars. 

Subsequent to the 2004 reports, several teams reported high spatial 
and temporal variability, including plumes of up to 60 ppbv methane. 
The variability posed an even greater theoretical challenge than the 
sheer presence of CH4. Methane’s predicted 300-year atmospheric 
lifetime is far longer than global mixing time of about a month [6-
9]. Hence, methane should be uniformly distributed in the Martian 
atmosphere. Introducing novel, much more efficient sinks can shorten 
the predicted lifetime [10]. However, a strong sink, whatever its nature, 
would also require a source that seems implausibly strong. Indeed, 
Lefevre and Forget [9]  stated that the observed variations of methane 
on Mars are not explained by known atmospheric chemistry and 
physics at the time. However, these previous remote-sensing detection 
claims have been called into question, due to interference from telluric 
absorption in the ground-based observations, low spectral resolution 
in the orbital observations, and contradictions between the locations of 
maxima reported from ground-based observations and maps inferred 
by the Planetary Fourier Spectrometer (PFS) and Thermal Emission 
Spectrometer (TES) [9,11,12]. 

Therefore, a definitive measurement from the Mars Science 
Laboratory (MSL) had been highly anticipated. In particular, MSL’s 
Tunable Laser Spectrometer (TLS) instrument has superb spectral 
resolution to definitively measure methane on Mars.

Lo and behold, TLS’s latest measurements indicate a background 
CH4 mixing ratio of 0.7 ppbv and a pulse of 7 ppbv observed over 
two months [13]. These findings suggest at least two types of methane 
emission are at work, a constant emission producing the background 
level and a pulse mechanism. Some time is required for the scientific 
community to fully vet these results to rule out any possible sources of 
error [14]. If it is borne out, this discovery becomes one of the greatest 

Eureka moments in the half century of robotic exploration of Mars, 
beginning with the first success of Mariner 4 in 1965 and reaching 
such ambitious milestones as the Viking landers [15-17] and Curiosity 
rover [18]. These intriguing findings promise to compel a new era of 
Mars and astrobiological research to explain methane’s existence and 
variability in the Martian atmosphere. 

Potential Origins
The question regarding the origin of methane raises tantalizing 

possibilities regarding potential life and habitability on Mars. As 
discussed above, methane’s atmospheric existence requires a recent 
or continually replenishing source, which challenges the conventional 
framework of a geologically and biologically dead Mars [19]. 

Furthermore, methane’s high variability, despite an atmospheric 
mixing rate that is much shorter than its chemical lifetime [3,9,10,20,21], 
defies explanation to date. This discovery necessarily opens a new era 
of research pursuing answers to the questions: What is generating 
methane? How is it destroyed or sequestered on Mars? 

Extrapolating our knowledge of terrestrial biotic sources to Mars, 
many consider methanogens (a type of Archaean microbe) as a 
probable analog to Martian life forms [22-24]. Some methanogens are 
able to utilize inorganic compounds (H2 and CO2) as their only source 
of energy through the following methane-generating redox reaction 
[4,22]: 

CO2 + 4H2=CH4 + 2H2O (ΔH°=-167 kJ).

Being independent of sunlight/photosynthesis for subsistence, 
methanogens thrive in deep subsurface locales where CO2 is 
the predominant oxidant and H2 (aq) is abundant from water-
rock interactions (ferrous-ion reduction of H2O to H2 during 
serpentinization). H2 may also come from photochemical dissociation 
of H2O in the atmosphere [23]. In fact, methanogens thrive in some 
of the harshest environments on Earth, including extremely acidic 
environments and inside Greenland glacial ice 3-km deep, which is 
analogous to Martian subsurface ice environments [25-28]. 

Alternatively, many researchers favor Fischer-Tropsch-type (FTT) 
reactions as a potential methane source [4,10,29]. FTT is the most widely 
posited abiotic source of methane on Earth. Catalyzed by transition 
metals (Ni, Fe, Co, Cr, Ru) and related oxides, these reactions have the 
same overall chemical equation as the methanogenesis reaction above, 
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and take place in hydrothermal environments [30]. Abundant evidence 
indicates that volcanism and hydrothermal environments existed, and 
might still exist, on Mars [5,31,32]. If these environments do exist on 
current Mars, they may provide warmth and liquid water to support 
FTT and/or microbial methane production. Thus, CH4 in Mars’ 
atmosphere can point to either serpentinization or the existence of 
life itself, both of which are associated with a hydrothermal, habitable 
backdrop. 

Other proposed sources of Martian methane include volcanic/
magmatic degassing [33,34], exogenous delivery [35-39] and release 
from clathrates [40]. It would be premature to adopt or dismiss any of 
these hypotheses, or to suppose there can be no others. 

Potential Sinks
From the surface to 60 km altitude, excited oxygen atoms, O(1D), 

and OH destroy methane. As mentioned above, the resulting methane 
lifetime is about 300 years, so the observed variability on timescales of 
months to years is unexpected. Introducing novel, much more efficient 
sinks can shorten the predicted lifetime [10]. It is worth noting that 
MSL’s ChemCam instrument reported anomalous O2 depletion that 
appears to be temporally correlated with CH4 enhancements, evoking 
questions of whether an unknown oxidizing sink exists on Mars [41]. 
However, a strong sink, whatever its nature, would require a source 
that seems implausibly strong [9]. Sequestration is another possibility 
[42,43], especially if we can find a mechanism that is both efficient 
enough, and reversed by changing conditions on Mars, to produce the 
observed methane-abundance variations. 

The Pulsing Sources
While there is more than one explanation for the steady 

background CH4 of about 0.7 ppbv, the pulse of 7 ppbv defies a simple 
explanation. Because a serpentinization source would likely be located 
a few kilometers below the surface [30], it is difficult to concoct a 
release mechanism that is so confined in time. The transport from the 
source region to the planetary surface is a steady diffusive process and 
no model has produced a localized pulse. Similarly, the action of UV 
on organics is a diffuse process [37-39] and is not expected to prefer a 
particular location or time. 

Analogy with the CH4 emission from terrestrial permafrost may 
be illuminating. Episodic bursts of CH4 from Arctic tundra have been 
observed during several weeks of thawing and freezing [44,45]. Each 
short-lived pulse of CH4 emission often equals the integral of the 
background emission from the rest of the year. Most of the CH4 is 
of microbial origin, and is produced and sequestered in the first few 
centimeters of soil, and then released to the atmosphere as the near-
surface thaws or freezes. Potential future investigations involving, e.g., 
abundance correlations with ground temperature and temporal-spatial 
patterns in methane abundance and stable-isotope compositions can 
shed light on whether or not such seasonal cryo-trapping is at work on 
Mars [46]. 

Journey into the Unknown
Resolving the methane sources and sinks on Mars will require an 

exploration and technology-development strategy. Existing hypotheses 
of Martian methane sources include gas-water-rock chemistry [30] 
and microbes (methanogens) [23]. If proven, the former implies the 
existence of environs offering liquid water and chemical sources of 
energy—i.e. habitability—while the latter implies the discovery of life 
on Mars. Solving these planetary-scale puzzles requires a concerted 

research effort across many disciplines. Resulting hypotheses regarding 
Martian methane’s sources and sinks will undoubtedly call for major 
technological advancements, including new measurement and 
exploration capabilities and methodologies. 

The foregoing overview points to a myriad of interrelated questions 
that impact future Mars exploration such as: 

•	Do methane-producing organisms exist in the Martian 
subsurface? 

•	 Are there geological hotspots or hydrothermally-active 
environments generating methane on Mars? 

•	 Are there sinks or sequestration sites for methane on Mars?

•	 What are the measurable signatures for hypothesized methane 
sources and sinks/sequestration sites?

•	 How does one distinguish biotic and abiotic sources using a 
combination of existing tools and novel methodologies? 

•	 Can the ultraviolet degradation of accreted interplanetary or 
carbonaceous material explain the observed pulse of elevated 
methane?

Answers to these important questions dictate fundamental 
aspects of future Mars exploration strategy and mission design, 
including landing site selection, requirements for drilling capability, 
requirements on deployable platforms (e.g. higher mobility rovers, 
balloons/airships), requirements for instrument capabilities to detect 
relevant (e.g. molecular, isotopic, thermal, morphological) signatures, 
and mission durations relevant to expected dynamical time-scales. In 
particular, it is already clear that major advancements in instrument 
technology will surely be needed. Past and existing orbiting instruments 
have had difficulties producing convincing evidence to answer first-
order questions: Does methane exist and how much? In-situ, MSL-TLS 
accomplished this feat and also observed temporal variability, but it had 
to reach deep into its capability. The next level of questions, regarding 
sources, sinks, sequestration, and transport, will demand major new 
measurement and exploration capabilities.

A future Mars exploration program will have to bring together 
complementary expertise that is necessary to generate synergy in 
creating innovative ideas and a comprehensive roadmap. Advances 
in the fields of Mars exploration and instrumentation will be driven, 
augmented and supported by an improved understanding of deep-
subsurface biogeochemistry, astrobiology, planetary geology, 
atmospheric chemistry, atmospheric dynamics, and remote sensing, as 
well as the study of Mars climate evolution, clumped-isotope analysis, 
stable-isotope analysis, origins of life, biosignatures, methane emissions 
from permafrost, and hydrothermal processes and signatures. 

May the Eureka moment crystallize into a new phase of exploration 
with further expansion of the interdisciplinary enterprise of life and 
environment on Mars [47]!
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