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Abstract

Cancer is one of the leading causes of death worldwide. Every year 8.2 million people die from the disease. In
this context, breast and ovarian cancer are the most incidental among women. Elucidation of cell growth pathways
and the observation that these pathways are altered in human cancer have encouraged the search for specific
inhibitors. The phosphatidylinositol-3cinase (PI3K)/Protein kinase b (AKT)/Mammalian Target of Rapamycin (mTOR)
is an important pathway involved in cell growth, tumorigenesis, cell invasion, and resistance to therapies. This
pathway is often activated in breast and ovarian cancers and the deregulation of its signaling can contribute to tumor
growth, angiogenesis and metastasis. Metformin is one of the most commonly prescribed antidiabetic drugs in the
world whose anticancer effects, mediated by reduced mTOR signaling, have become notable. Therefore, this review
provides an overview of signaling pathway PI3K/AKT/mTOR in the ovarian and breast cancers as well as for target
therapies of mTOR signaling, with an emphasis on its mechanisms, clinical applicability and future perspectives.

Keywords: Breast cancer; Ovarian cancer; mTOR pathway; mTOR
inhibitors; Metformin

Introduction
The mTOR is a serine/threonine kinase ubiquitously expressed in

mammalian cells being part of the PI3K/AKT pathway (Figure 1) [1,2].
In cells, mTOR is present in two distinct complexes, mTOR Complex 1
(mTORC1) and mTOR Complex 2 (mTORC2) that together regulate a
variety of processes including proliferation, differentiation,
metabolism, motility, survival, autophagy and angiogenesis [3-5].
Furthermore, the mTOR pathway is frequently hyperactivated in a
number of human malignancies, including breast and ovarian cancer
[6], therefore it is considered as a promising therapeutic target and a
hotspot in cancer research.

Figure 1: Overview of Pl3K/AKT/mTOR signaling pathway.

Preclinical studies have confirmed the anticancer effects of mTOR
inhibitors in breast and ovarian cancer and further understanding of
the molecular mechanism in PI3K/AKT/mTOR cascade is needed to
develop optimized therapeutic regimens [6]. Combination therapies of
mTOR inhibitor with agents such as cytotoxic chemotherapy,
hormonal therapy, receptor tyrosine kinase inhibitors and vascular
endothelial growth factor (VEGF) inhibitors are being intensively
studied and appear to be promising.

Importantly, new players in mTOR signaling pathway have emerged
with therapeutic potentials such as the antihyperglycemic drug
metformin. Metformin, oral safe and well-tolerated drug, has been
associated with reduced cancer risk in observational studies [7,8].
Beyond glucose lowering, metformin has shown in vitro promising
results regarding reduction of cell proliferation and protein synthesis in
breast and ovarian malignancies [9-11]. In this review, we provide a
brief outline of our current understanding of the mTOR signaling
pathway and discuss the clinical trial evidence available to date.

The mTOR Pathway
mTOR is a highly conserved intracellular serine/threonine kinase

found practically in all mammalian cells. Under physiological
conditions, mTOR modulates several processes, including protein
translation, cell growth, proliferation, survival, metabolism, and
autophagy [12-16]. mTOR is a component of two major intracellular
signaling complexes, mTORC1 and mTORC2, which differ from each
other in composition and functionality. mTORC1 consists of mTOR,
raptor (regulatory associated protein of mTOR), PRAS40 (proline-rich
AKT substrate 40 kDa), and mLST8 (mammalian lethal with sec-13);
whereas mTORC2 is composed of mTOR, rictor (raptor independent
companion of mTOR), mSIN1 (mammalian stress-activated protein
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kinase interacting protein 1), mLST8 and Protor-1 (protein observed
with rictor-1) [14].

Diverse environmental signals, including growth factors (e.g.
insulin, insulin-like growth factor 1 (IRS-1), epidermal growth factor
(EGF), nutrients (e.g. amino acids) and cellular stress, regulate
mTORC1 signaling [17-19]. After activation, mTORC1 phosphorylates
a range of substrates, such as the 40S ribosomal protein S6 kinase
(p70S6K), 4E-binding protein 1 (4E-BP1) and UNC-51-like kinase 1
(ULK1) [1,2]. p70S6K and 4E-BP1 associate with mRNAs and regulate
both mRNA translation initiation and progression, thus enhancing
protein synthesis [20,21]. ULK1, in turn, modulates autophagy
pathways [2,22,23]. On the other hand, and in contrast with the well
described cellular roles of mTORC1, the function of mTORC2 is still
not fully elucidated. However, it is known that mTORC2 promotes the
activation of several kinases such as AKT and protein kinase C (PKC),
and regulates the cytoskeleton organization [14,24-26].

It has been described that mTORC1 is activated by growth factors
through the PI3K/AKT pathway. Most of the growth factors interact
with receptor tyrosine kinases (RTK), upstream from the PI3K
pathway, leading to the phosphorylation of phosphatidylinositol-4,5-
bisphosphate (PIP2) to generate phosphatidylinositol-3,4,5-
trisphosphate (PIP3). PIP3 serves as a docking site for
3′phosphoinositide-dependent kinase 1 (PDK1) and AKT, resulting in
the phosphorylation at threonine 308 (Thr308) and activation of AKT
by PDK1 [27,28]. In turn, AKT phosphorylates the tuberous sclerosis 2
(TSC2), thereby inhibiting the Ras homolog enriched in brain (Rheb)
GTPase activity of the TSC1/TSC2 complex. Rheb, in its GTP-bound
state, can activate mTOR [29,30]. Nonetheless, the upstream regulators
of mTORC2 remain poorly characterized. Recently, in vitro kinase
assays have shown that growth factors can activate mTORC2 [31]. The
mTORC2 complex contributes to complete AKT activation by
phosphorylating AKT at serine 473 (Ser473) [14,32].

Physiologically, some of the components of the PI3K/AKT/mTOR
pathway are inhibited by proteins, such as the phosphatase and tensin
homologue deleted on chromosome ten (PTEN) and the inositol
polyphosphate 4-phosphatase type II (INPP4B), as well as by the
TSC1/TSC2 complex [33-35]. PTEN acts on the D3 phosphorylated
position of PIP3, promoting the formation of PIP2, thereby preventing
the activation of AKT and PDK-1 [36,37]. Furthermore, INPP4B, a
recently described lipid phosphatase, converts PIP2 to
phosphatidylinositol monophosphate (PIP), thus regulating the PI3K
activation [38,39]. Other negative regulators involved in this pathway
are the PRAS40 and FK506-binding protein 8 (FKBP8), which prevent
Rheb from activating mTORC1 [40,41].

Importantly, mTORC1 negatively regulates growth factor signaling
in two distinct manners. When activated by mTORC1, p70S6K directly
phosphorylates the insulin receptor substrate-1 (IRS1), which
promotes IRS1 degradation, and leads to decreased PI3K signaling and
reduced AKT Thr308 phosphorylation [42-44]. In addition, mTORC1
directly interacts with IRS1 via Raptor, and phosphorylates IRS1 at
Serine 636/639 (Ser636/639), hence, interfering with its association
with PI3K [45].

The Role of mTOR in Breast and Ovarian Cancer
In the last few years, significant advances have been made in

understanding the role of mTOR in cancer development and
progression. Increased mTOR signaling in cancers has been implicated
in tumorigenesis, promotion of cell survival, angiogenesis, invasion,

tumor growth, patient prognosis and resistance to standard therapies
[46].

mTOR activation involves loss of PTEN expression or function,
mutation or amplification of the PI3K, amplification of AKT and
inactivation or mutations of AKT-associated mTOR-regulatory
proteins such as TSC1/TSC2 [47]. Additionally, aberrant activation of
p70S6K and eIF4E has been reported in various human cancers, in
which they correlate with tumor aggressiveness and poor disease
prognosis [48-51]. The mTOR pathway can also be activated via
exogenous oncogenes, including mutated or overexpressed RTKs, such
as insulin-like growth factor 1 receptor (IGFR-1), platelet-derived
growth factor receptor (PDGFR), and human epidermal growth factor
receptors 1-4 (HER1–4) [52-55].

Ovarian cancer
Ovarian cancer is the most lethal gynecologic malignancy, and the

fifth cause of cancer-related death among women [56,57]. According to
the American Cancer Society (ACS), 22,440 new cases of ovarian
cancer and 14,080 related deaths are estimated in the U.S.A. in 2017.
When diagnosed at early and localized stages, the 5-year survival rate
of ovarian cancer patients is approximately 94%. Nevertheless, most of
the cases are detected as advanced and metastatic disease, in which
cases it relapses within two years, and the patients´ survival rate
decreases to 27% mainly due to chemoresistance to the platinum-
taxane based chemotherapy in the adjuvant setting [57-60].

Ovarian cancer comprises a heterogeneous group of diseases
classified based on morphologic and molecular-genetic features
[61,62]. Type I tumors are composed of low-grade serous, low-grade
endometrioid, clear cell, mucinous and transitional (Brenner)
carcinomas. On the other hand, type II tumors, which are highly
aggressive and almost always present in advanced stage, include high-
grade serous carcinoma, undifferentiated carcinoma, and
carcinosarcoma [63,64]. High grade serous ovarian cancer is the most
prevalent ovarian cancer subtype, accounting for about 85% of all
ovarian cancer-related deaths [65], followed by the clear cell and
endometrioid subtypes that occur at similar rates, and mucinous
carcinomas, the less common form of the disease [66]. Of note, genetic
alterations, as somatic mutations, gene amplifications, and deletions in
ovarian cancer seem to be subtype-specific, supporting the
heterogeneity of the molecular, chemoresistance and clinical profiles of
the multiple manifestations of the disease [67-69].

Despite the strong body of evidences pointing to specific genetic
variations involved in the development and progression of ovarian
cancer, there is still debate with regard to prevalent mutations and their
prevalence in the disease. The analysis of 500 high grade serous ovarian
tumors was conducted by the Cancer Genome Atlas (TCGA) project,
revealing that 96% of all ovarian cancer subtypes present mutations in
the TP53 gene [65,68]. In agreement, a systematic analysis of the
TCGA Pan-Cancer cohort, which included 3,281 tumors from 12
cancer types, reported the prevalence of mutated TP53 gene in 95% of
the 316 ovarian serous carcinomas included in the study [47]. Also, less
frequent but yet recurrent mutations were reported in the RB1, NF1,
FAT3, CSMD3, GABRA6 and CDK12 genes [47,65]. There is probable
genetic specificity within ovarian cancer subtypes. In this context,
whereas TP53 mutations are highly incident amongst type II tumors,
they rarely occur in type I tumors [63,64]. The opposite seems to occur
with respect to the rare but carcinogenic mutations in the KRAS,
BRAF and ERBB2 genes that are prevalent in low-grade ovarian
carcinomas in comparison to the high grade tumors [65,68]. Moreover,
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ovarian clear cell tumors present mutations in the PIK3CA, TP53,
KRAS, PTEN genes with a frequency of 33%, 15%, 7%, and 5%,
respectively [70,71], whereas endometrioid ovarian tumors frequently
have mutated CTNNB1 (encoding β-catenin), ARID1A, member of
the SWI/SNF family, and PIK3CA genes [64]. The mucinous ovarian
tumors present prevalent KRAS gene mutations [63,64,72].

A key controversial aspect related to the genetic variations
underlying ovarian cancer development and progression, including
chemo-resistance, relies on the PI3K/AKT/mTOR pathway. Bellacosa
et al. [73] have documented that amplification of the AKT genes
coding for all of the protein isoforms seems to occur in 15% to 20% of
high grade serous ovarian carcinoma cases. Furthermore, mutations or
gene amplification of the PIK3CA gene, which code for the p110α
catalytic subunit of the PI3K protein, have been detected in 30.5% of
all ovarian cancers [74]. Intriguingly, the recent TCGA Pan-Cancer
study showed that the PIK3CA gene is the second most common
mutated gene, behind the TP53 gene only, occurring frequently (>10%)
in most cancer types, except ovarian serous carcinoma, kidney clear
cell carcinoma, lung adenocarcinoma, and acute myeloid leukemia.
Likewise, none of the ovarian serous carcinoma studied presented
mutations in the AKT1 gene [47]. Notwithstanding the fact that the
TCGA Pan-Cancer study has focused exclusively on gene mutations,
but not on gene amplification, the data are still conflicting with
previous publications [47]. Nonetheless, ongoing clinical trials support
the benefit of ovarian cancer patients from the pharmacological
inhibition of the PI3K/AKT/mTOR pathway, therefore reinforcing the
fact that solving ovarian cancer molecular profiling by means of
characterizing the heterogeneity of its subtypes and their mutational
landscape likely represents an opportunity to fight the disease using
target therapies effective against specific aberrations [75-77].

Breast cancer
Breast cancer (BC) is the most frequent malignancy, and the second

cause of cancer-related deaths among women in the United States,
where 252, 710 new cases of the disease and 40,610 related deaths are
expected in the year of 2017 [58]. Worldwide, the scenario is dramatic
as well, with more than 1 million new cases of BC diagnosed yearly
[65]. Breast cancer comprises multiple diseases harboring different
genetic alterations, whose subtypes respond differently to treatment,
and are associated to distinct clinical outcomes [78,79].

In 2000, Perou and colleagues proposed a more reliable method to
stratify breast cancer based on gene expression profiling, resulting in
four major subtypes: luminal, human epidermal growth factor receptor
2 (HER2)-enriched, normal breast and basal-like (BL). The luminal
and HER2-enriched group benefit from hormonotherapy and anti-
HER2 immunotherapy, respectively [80-82]. Basal-like breast cancers
are often referred to as triple-negative breast cancers (TNBC) because
most tumor cells lack the expression of estrogen receptor (ER),
progesterone receptor (PR) and HER2. However, only 75% of TNBC
are of the basal-like subtype [83]. Although chemotherapy remains the
mainstay strategy to combat basal-like breast cancer, target therapy
and/or novel and efficacious molecules are still unavailable, leading to
poor clinical outcome and patients´ death following short disease
progression-free interval [84].

Advances in understanding the etiology and biology of breast
cancer have led to the identification of key targets among multiple
signaling pathways involved in the development, malignant
transformation, and survival of breast cancer cells. The PI3K/AKT/
mTOR pathway is commonly deregulated in breast cancer. Indeed, a

systematic analysis of the TCGA Pan-Cancer cohort revealed that
mutations in PIK3CA are frequent in breast cancer (33.6% of the 763
primary breast cancers included in the study), being specifically
enriched in luminal, ER+ subtype tumors. Moreover, PIK3CA
mutations occur in breast cancer at a relatively high average variant
allele fraction, thus enabling to infer early appearance of the genetic
aberrations during tumorigenesis [47]. In addition to the putative
involvement of PIK3CA mutations in breast cancer initiation, there is a
strong body of evidences pointing to a critical role of the anomalous
expression and activity of the PI3K/AKT/mTOR pathway in drug
resistance [85]. Of clinical relevance, PI3K activation has been
implicated in resistance to endocrine therapy in patients with ER+
breast cancer [86]. Therefore, means to identify which ER+breast
cancer patients may require PI3K/mTOR inhibition could facilitate a
more accurate selection of patient populations for treatment,
particularly in the adjuvant setting.

Interestingly the three main breast cancer subtypes display a
remarkable difference within their mutational spectra. Mutations in
the PIK3CA gene have been significantly associated with luminal
breast tumors (45%). In turn, the HER2-enriched subtype has been
characterized by HER2 amplification (80%), and high frequency of
mutated PIK3CA (39%) and TP53 (72%) genes. In contrast, basal-like
tumors have been associated to a frequency of 9% of mutations in the
PIK3CA gene, and high frequency of TP53 mutated gene (80%) [65].
Intriguingly, the PI3K pathway has been described as aberrantly
activated at high frequency in basal-like breast cancer, thus enabling
the postulation that alternative mechanisms are elicited by these tumor
cells to warrant the phenomena. This might include loss of expression
of the INPP4B and PTEN genes or amplification of the PIK3CA gene
[87]. Basal-like tumors also exhibit frequent amplification of the KRAS
(32%), BRAF (30%), and epidermal growth factor receptor (EGFR)
(23%) genes, contributing with constitutive activation of the
PI3K/AKT/mTOR pathway [65].

Both breast basal-like and ovarian serous tumors are diseases
related to patient`s poor clinical outcome, and share common genetic
features, such as the RB1 gene loss, the BRCA1 gene inactivation, the
overexpression of the AKT3 gene, the MYC gene amplification, and
the high frequency of TP53 gene mutation [65].

mTOR Inhibitors in Cancer Therapy

Rapamycin and its derivatives
The mTOR serine/threonine kinase is a multiprotein complex and it

is directly involved in many cell signaling pathways and many
aberrations of the mTOR implicated in human cancer. mTOR
inhibitors studied in clinical trials for cancer treatment showed that
tumor cells with mutations in p53 or PTEN are susceptible to mTOR
inhibitors [88].

mTOR inhibitors could be categorized in first and second-
generation-presenting a wide variety of target and mechanism . The
first-generation mTOR inhibitors include rapamycin and its analogues
(sirolimus, temsirolimus, everolimus) that employ allosteric
mechanism to block, whereas second generation mTOR inhibitors
(AZD8055, Torin1, PP242, PP30) have as target ATP binding site to
impede kinase activity of both mTORC1 and mTORC2 [89].

Rapamycin, a macrocyclic lactone isolated from the soil bacterium
Streptomyces hygroscopicus, first discovered in 1975, has diverse
clinical applications as an anti-fungal, immunosuppressant and anti-
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cancer drug [90,91]. Nevertheless, rapamycin has limited
bioavailability due to its poor aqueous solubility. In an effort to
improve its pharmacokinetics, several rapamycin analogues, named
rapalogs, have been developed, such as the mTOR inhibitors
temsirolimus (CCI-779), everolimus (RAD001) and ridaforolimus
(MK-8669/AP23573) [4,92,93]. Rapamycin and its derivates exhibit a
safe toxicity profile, being the side effects skin rashes and mucositis
dose-dependent [94]. Other symptoms commonly described are
fatigue, nausea, anaemia, hypertriglyceridemia, hypercholesterolemia
and neutropenia [95]. Furthermore, temsirolimus and sirolimus are
associated with significant rate of pulmonary toxicity [94,95]. Rare side
effects of the aforesaid drugs included interstitial lung disease, risk of
secondary lymphoma, and reactivation of latent infections [69].

The precise mechanisms of mTOR inhibition by rapalogs are not
fully understood. However, evidences point to the allosteric inhibition
of mTORC1. In mammalian cells, the rapalogs associate with the
intracellular receptor FK506 binding protein 12 (FKBP12). Then, this
complex interacts with the FKBP12-rapamycin binding (FRB) domain,
inhibiting allosterically the mTOR kinase activity. It is widely believed
that rapalogs would be therapeutically effective by blocking the
mTORC1’s phosphorylation activity of S6K and 4EBPs, which are key
upstream regulators of protein synthesis, cell proliferation, cell-cycle
progression and angiogenesis [96,97]. Three different mechanisms of
action have been proposed for rapamycin. Firstly, the binding of the
FKBP-12–rapamycin complex to mTOR that could lead to
dephosphorylation of downstream effector molecules such as S6K1
and 4E-BP1 [98]. Secondly, the FKBP-12–rapamycin complex
competes with phosphatidic acid to bind to the FRB domain of mTOR,
blocking mTOR kinase function [99]. Thirdly, the FKBP-12–
rapamycin complex bound to mTOR destabilises the mTOR–raptor–
4E-BP1/S6K1 scaffold complex, leading to dephosphorylation of S6K1
and 4E-BP1 [13,100]. However, the effects of rapamycin are dependent
on cell type. This inhibitor only causes cell cycle arrest in a limited
number of cell types and has modest effects on protein synthesis
[101,102]. Moreover, rapamycin is a relatively poor inducer of
autophagy [103]. Therefore, the clinical effects are extended for few
cancers, such as cell carcinoma renal and lymphoma [96]. It may be
explained, at least partly, by the fact rapamycin could not block the
function of mTORC1 completely and showed little effect on mTORC2
complex in the majority of cell types [5,104]. Furthermore, PI3K
pathway could be active due to feedback loop when mTORC1 is
inhibited [105].

Some studies have shown that these compounds are able to disrupt
the mTORC2 complex in a dose-, time- and cell type-dependent
manner [14,106,107]. A possible mechanism by which rapamycin and
rapalogs could inhibit mTORC2 relies on the interaction of newly
synthesized mTOR molecules and rapamycin/rapalogs-FKBP12
complexes. In turn, this interaction would prevent mTOR from the
interaction with RICTOR, inhibiting, thus, mTORC2. Indeed, it has
been shown that prolonged exposure of cancer cells to rapamycin can
promote its binding to mTOR before the assembly of the mTORC2
complex, with subsequent inhibition of the AKT-mediated signaling
[14].

Two mTOR inhibitors have been approved for clinical use in cancer.
Everolimus (Afinitor®), the first oral mTOR inhibitor to reach the
oncology clinic, has been approved by the Food and Drug
Administration (FDA) for the treatment of metastatic or unresectable
pancreatic neuroendocrine tumors, advanced stage renal cell
carcinoma, subependymal giant cell astrocytoma [108], progressive

neuroendocrine tumors of the pancreatic origin [109], metastatic renal
cell carcinoma and advanced ER+ [110], HER2 negative breast cancer
[85]. Moreover, Tensirolimus (Torisel®) was also approved by the FDA
in 2007 for the management of advanced stage renal cell carcinoma
(FDA). Both derivative of rapamycin form a complex with FKBP-12
and this complex then binds to the FRB domain and inhibits the
mTOR function [111].

Several studies have been conducted to analyze the effectiveness of
rapamycin and rapalogs alone and in combination with standard
chemotherapy, hormonal therapy such as EGFR and anti-VEGF
inhibitors in the treatment of several types of cancers such as breast,
ovarian, cervical and endometrial [112]. Phase I–II trials are now
ongoing with mTOR inhibitors in patients with breast and ovarian
cancer.

For example, phase II studies are ongoing in order to test everolimus
in combination with chemotherapy (cisplatin and gemcitabine) in
patients with metastatic triple negative breast cancer (NCT01939418
and NCT01931163). Additionally, a recent study of breast cancer
(BOLERO-3) demonstrated that the combination of everolimus with
trastuzumab and vinorelbine significantly prolongs progression-free
survival (PFS) in patients with trastuzumab-refractory and taxane-
pretreated, HER2+, advanced breast cancer [113]. Moreover,
BOLERO-1 is an ongoing phase III, randomized, double-blind,
placebo-controlled trial that will evaluate 717 patients with untreated
metastatic HER2+ breast cancer randomly assigned to receive
paclitaxel and trastuzumab with or without everolimus as first-line
therapy [114]. A randomized placebo-controlled phase III trial
(BOLERO-2) evaluated everolimus in combination with the aromatase
inhibitor, exemestane, in postmenopausal women with HR+/HER2−
advanced breast cancer that progressed after previous letrozole or
anastrozole therapy. This study showed a significant increase in PFS
(10.6 versus 4.1 months) and led the approval of everolimus in
combination with exemestane by FDA in 2012 [115].

Clinical studies have evaluated the aromatase inhibitor letrozole in
combination with everolimus in patients with metastatic endometrial
carcinoma (NCT01068249). Phase II study showed that patients with
endometrioid histology and CTNNB1 mutations responded well for
the treatment [116]. In another phase II study in patients with breast
cancer (NCT00107016), everolimus significantly increased letrozole
efficacy in neoadjuvant therapy with ER+ patients [117]. Studies have
been conducted using aromatase inhibitor anastrozole with everolimus
in patients with ER and/or PR+ breast and gynecologic tumors as
ovarian and endometrial cancer and the combination prolonged
periods. Also, patients with multiple molecular alterations still
benefited from therapy [118].

A phase II trial of ridaforolimus (AP2357) had been conducted in
patients with advanced endometrial cancer and clinical benefit
response was reported in 33% of the patients [119]. Another phase II
study using oral ridaforolimus in patients with advanced or recurrent
endometrial cancer also showed partial response in 7.7% patients
[120]. Also, temsirolimus is being evaluated with bevacizumab and in
combination with chemotherapeutic agents in endometrial cancer cell
lines, and results showed that it increases progesterone mRNA
expression and inhibits ER mRNA expression [121]. Preliminary a
phase II study conducted by Tinker and colleagues, 2013 using
temsirolimus in patients with metastatic cervical cancer showed that
3.0% of patients had a partial response lasting 7.2 months, and 57.6%
had stable disease with a median duration of 6.5 months [122].
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Promising results also have been found in a study conducted by
Campone et al. (2009) [123] to assess the safety and the
pharmacokinetic interactions combining everolimus and paclitaxel in
patients with breast cancer and ovarian carcinoma. Another phase II
clinical study (GOG0268) that evaluates additional effects of the
temsirolimus combined with paclitaxel/carboplatin therapy has been
conducted in patients with stages III/IV clear cell adenocarcinoma
[112,124]. However, some studies failed to show the efficiency of
temsirolimus in patients with persistent/recurrent epithelial ovarian
cancer/primary peritoneal cancer showing a modest activity of this
mTOR inhibitor and the results were insufficient to justify further
study in a phase III [125].

Although clinically promising, the efficacy of rapalogs is partially
limited by the negative feedback loops in the mTOR pathway. With this
regard, the exclusive inhibition of the mTORC1 complex by the
rapalogs compromises the p70S6K-mediated feedback loop towards
IRS-1, resulting in the activation of both the PI3K/AKT and
MAPK/ERK pathways, hence promoting compensatory cell survival,
and the acquisition of chemoresistant phenotype [5,44,93]. Efforts have
been made to overcome the aforesaid clinical limitation by means of
developing new generation mTOR inhibitors, which inhibit the
catalytic activity of both mTORC1 and mTORC2 complexes.

ATP-competitive inhibitors
Although rapamycin is a potent allosteric mTORC1 inhibitor with

clinical applications, a second generation ATP-competitive inhibitor
has been developed, including Torin1, Torin2, PP242, PP30,
KU0063794, WAY-600, WYE-687, WYE-354, XL-388, INK-128,
AZD-2014, AZD8055 and OSI-027 [126-132] . The ATP-competitive
inhibitors of mTOR directly inhibit the mTOR kinase activity, affecting
both the mTORC1 and mTORC2 complexes. In comparison with
rapamycin and rapalogs, ATP-competitive inhibitor is more potent and
efficacious against cancer not only because of the complete inhibition
of mTORC1 but also due to the additional inhibition of mTORC2,
consequently preventing AKT phosphorylation at Ser473
[104,130,133].

Studies which have been conducted with PP242 in colon cancer cells
in vitro and in vivo showed decrease cell growth alone or in
combination with MEK inhibitors [134]. Another ATP competitive
inhibitor, Torin2, was developed to overcome the pharmacological
limitations of Torin1 and is also a potent inhibitor of ATR, ATM and
DNA-PK [135,136]. Lung cancer cell treatment with Torin2 resulted in
a prolonged block in negative feedback and consequent Thr308
phosphorylation on AKT. These effects were associated with strong
growth inhibition in vitro [137].

At present, there are several clinical trials focused on the
examination of new agents, such as AZD-8055, OSI-027, WYE125132
and INK128, in a variety of human hematological malignancies and
solid tumors, including breast cancers [112]. Also some studies were
conducted using GSK795 in patients with advanced platinum resistant
ovarian and showed interesting results as tumor regressions and
CA125 decreases [138]. Phase I study is ongoing in order to evaluate
the safety and toxicity profile of AZD2014 in combination with
paclitaxel in patients with ovarian cancer (NCT02193633).

In spite of the clinical improvements observed with the ATP-
competitive inhibitor when compared to the rapalogs, the literature
still acknowledges significant limitations that outcome from
compensatory cellular events. With this regard, it has been found that

loss of the feedback on PI3K results in compensatory activation of the
MAPK/ERK cascade by mTOR downstream effectors, such as 4E-BP1/
eIF4E, then, maintaining cell proliferation [139]. Furthermore, it has
been shown that chronic inhibition of mTORC2 induces the activation
of AKT by its phosphorylation on the residue Thr308 mediated by
PDK-1, even in the absence of the priming Ser473 phosphorylation.
Altogether, the referred mechanisms ultimately drive the acquisition of
the resistant phenotype by the cancer cells [140,141].

Dual mTOR/ PI3K inhibitors
Scientists have explored to shed light on strategies to overcome the

limitations by concomitantly targeting two molecules in the
PI3K/AKT/mTOR pathway, PI3K and mTOR, whereas the resistance
mTOR inhibitors cloud arise via feedback PI3K activation. This
molecular knowledge has stimulated the development of news
inhibitors termed dual PI3K-mTOR inhibitors that include NVP-
BEZ235, XL765, BGT226, PI-103, PF-04691502, PKI-587 and
GDC-0980 [142-148]. Comparing with the other types of PI3K
pathway inhibitors, dual PI3KmTOR inhibitors have the possible
advantage of inhibiting all PI3K catalytic isoforms, mTORC1 and
mTORC2 [6]. The catalytic sites of PI3K and mTOR share a high
degree of sequence homology, thus enabling the abrogation of the
catalytic activity of both PI3K and mTOR, consequently blocking
downstream signaling related to cell proliferation, survival, and
angiogenesis [142-145]. Therefore, these inhibitors may effectively turn
off this pathway completely and display best efficacy in feedback
inhibition normally observed with mTORC1 inhibitors [149].
However, it is not clear that dual PI3K-mTOR inhibitors will be
tolerable at doses that effectively inhibit all p110 isoforms and mTOR
[6].

The potential clinical value of the dual PI3K/mTOR inhibitors has
been demonstrated by their significant inhibition of cell growth, and
the induction of apoptosis and/or autophagy in a variety of tumor
cancer cells [150-152], and these inhibitors have shown powerful
effects in xenograft models of breast cancer [153], pancreatic cancer
[154], melanoma [155], multiple myeloma [156], glioma [157], RCC
[158], and acute myeloid leukemia (AML) [159].

In agreement, dual PI3K/mTOR inhibitors have entered clinical
trials either as monotherapy as BEZ235/NVP-BEZ235, Novartis
(NCT00620594) and BGT226, Novartis (NCT00600275 and
NCT00742105) in advanced solid tumors and breast cancer,
GDC-0980 (Genentech) (NCT00854126 and NCT00854152) in non-
Hodgkin lymphoma, PF-04691502, Pfizer (NCT00927823) and
GSK2126458, GlaxoSmithKline (NCT00972686) in solid tumors or in
combination with other therapeutic agents, for example XL765
(Exelixis) associated with erlotinib (NCT00777699), letrozole
(NCT01082068) and temozolomide (NCT00704080) in non–small cell
lung cancer, breast cancer and gliomas, respectively [112]. Both
BEZ235 and XL765 have shown good tolerability, with adverse effects
including diarrhea, anorexia and nausea [160]. Furthermore, the
combined therapy using rapamycin and dual PI3K/mTOR kinase
inhibitor (PI-103) has been shown to be efficacious against human
ovarian cells in vivo [161].

Metformin
Metformin, a biguanide derivative, is a widely prescribed

antihyperglycemic drug and is prescribed as the first-line therapy for
type 2 diabetes mellitus (T2D), and insulin resistance syndromes [162].
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It is a relatively safe drug, with known pharmacokinetics and a
favorable safety profile. Importantly, metformin does not affect insulin
secretion nor induces hypoglycemia in normal patients [163], aside
from the fact that no teratogenic effects have been reported in the
newborn of drug users. The main limited side effect of metformin is
gastrointestinal discomfort, such as nausea and diarrhea, which are
usually self-limited [164]. Rarely, the serious adverse effect of lactic
acidosis is documented, which has been primarily restricted to patients
with concomitant renal and hepatic disorders [165]. Metformin may
also cause B12 deficiency in long-term therapy [166].

Several in vitro studies have shown that metformin treatment
inhibits cell growth, induces apoptosis, and reduces invasion in a
variety of human cancer cell lines, including breast and ovarian
cancers [167-172]. These preclinical studies propose that metformin
exerts its antineoplastic effects through multiple direct and indirect
pathways; however the exact mechanism by which metformin acts
remains poorly understood.

The indirect effects of metformin are related to the suppression of
the transcription of key gluconeogenesis genes in the liver, and the
increase of glucose uptake by skeletal muscle, thus leading to declines
in circulating insulin and glucose levels [173]. Besides lowering insulin
levels, metformin can indirectly increase insulin-like growth factor-
binding protein 1 (IGFBP1) production, ultimately decreasing the
bioavailability of IGF1 [174]. Insulin and IGFs are key regulators of
metabolism and growth, promoting the development of cancer
through the activation of the IRS/PI3K/AKT/mTOR and IRS/MAPK
axis [43,175].

In fact, the direct effects of metformin against cancer cells are
mostly mediated by the activation of AMP-activated protein kinase
(AMPK), and subsequent inhibition of mTOR, hence modulating cell
metabolism and protein synthesis. Metformin must be actively
transported into cells by the transmembrane protein organic cation
transporter-1/2 (OCT1/OCT2) [176,177]. Once inside the cells,
metformin inhibits the complex I of the mitochondrial respiratory
chain, which leads to the disruption of the mitochondrial function, and
to an increased ratio of adenosine monophosphate/adenosine
triphosphate (AMP/ATP), mimicking cellular energy stress [178,179].

AMPK exists as heterotrimers composed of a catalytic subunit, and
two regulatory subunits [180]. Each subunit is encoded by different
genes, and has a unique role in the regulation and activation of AMPK.
The subunit contains the activating phosphorylation site Threonine
172 (Thr172) [181], the subunit has the function of docking the protein
to membranes [182], and the subunit binds to AMP or ATP [183].
AMPK can be allosterically activated by AMP, leading to the
deposphorylation of the catalytic subunit by protein phosphatases.
Moreover, AMPK activation requires the phosphorylation of the
(Thr172) by upstream kinases [184-186]. The upstream master kinase
that regulates AMPK activation is LKB1, a tumor suppressor gene with
relevance in many types of neoplasias, including breast cancer
[187,188]. Once activated, AMPK regulates several effectors proteins,
thus governing the activation of catabolic pathways (lipolysis and
glycolysis), and the inhibition of anabolic pathways (gluconeogenesis,
lipid and protein synthesis) [189-192].

As aforesaid, tumor cells often display alterations in PI3K/AKT/
mTOR pathway, which is a key signaling mechanism towards cellular
growth and proliferation. Protein synthesis consumes a high
proportion of ATP in the cell, thus mTOR is a major target of AMPK
under conditions of metabolic stress. AMPK inhibits mTOR signaling

through two distinct mechanisms: phosphorylation of TSC2,
converting Rheb to its inactive GDP-bound form [193], and direct
phosphorylation of Raptor, a subunit of the mTORC1 complex [194].
In addition, metformin inhibits the mTOR activity in the absence of
TSC1/TSC2 and AMPK by suppressing RAG GTPases, which are
involved in mTOR activation [195,196].

The interest in metformin as anticancer drug emerged from
numerous retrospective, population-based studies in diabetic patients.
Studies have suggested that metformin reduces cancer incidence
and/or mortality among T2D patients, compared to those taking other
antidiabetic medications [7,8,197-202]. Prospective data concerning
metformin use in non-diabetic cancer patients are beginning to
emerge. Hadad et al. [203] performed a pilot study on a small cohort of
patients with breast cancer revealing that the use of metformin
(500-1000  mg/day) decreased tumor cell proliferation, estimated by
Ki-67 staining and altered the expression of various genes including
those involved in inflammation, metabolism and mTOR signaling.
Similarly, metformin treatment has been associated with beneficial
effects in non-diabetic breast cancer women, concerning Ki67 staining,
and terminal deoxynucleotidyl transferase-mediated dUTP nick end
labeling (TUNEL) scores [204]. However, Bonani et al. [205] have
failed to demonstrate clinical benefit of metformin in breast cancer
neoadjuvant setting through the evaluation of Ki67 expression.
Nevertheless a different effect of metformin according to insulin
resistance (homeostasis model assessment (HOMA) index) was noted,
particularly in luminal B tumors, with a trend to a decreased
proliferation in women with elevated HOMA index. Taken in
conjunction, the state of the art knowledge about metformin and
breast cancer has enabled authors to hypothesize that insulin resistance
modulates both breast cancer biology and the antineoplasic actions of
metformin [206,207].

There are more than 50 ongoing or upcoming clinical studies
investigating metformin in cancer patients as monotherapy or in
combined therapy with other antineoplasic agents [112]. For example,
two clinical trials (NCT01529593/ NCT02145559) have been initiated
aiming the evaluation of the treatment of advanced cancers, including
breast cancer, with temsirolimus/sirolimus and metformin. In addition,
an ongoing phase II study proposes to evaluate the combination of
metformin, everolimus and letrozole in postmenopausal overweight or
obese women with advanced receptor-positive breast cancer
(NCT01627067).

Conclusion
Both highly lethal malignancies comprise deregulated and

anomalously activated PI3K/AKT/mTOR pathways, hence emerging as
eligible diseases to be fought with common targeted therapeutic
strategies. In this context, early trials of mTOR inhibitors have shown
some clinical benefit and, combinations of mTOR inhibitors with other
treatment modalities have demonstrated clinical results without
significant additional toxicity. Furthermore, the combination seems to
be promising due to the fact that metformin inhibits mTOR, even in
the absence of AMPK, through the decreased activation of IGFR-1/
MAPK, an important pathway related with resistance to mTOR
inhibitors. Find below a summary of the main inhibitors mentioned in
this paper.
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