
Metabolomics and its Applications in Systematic Metabolic Engineering

Jackson Mason*

Department of Biomolecules, University of Oxford, Oxford, UK

DESCRIPTION
The biological information offered by metabolomics is well-
suited to the goals of metabolic engineering information on how
the cell is currently using its biochemical resources is one of the
greatest ways to inform strategies for designing a cell to create a
target product. It is quite typical to use extracellular or
intracellular amounts of the target substance (or a few closely
similar compounds) to drive metabolic engineering [1]. However
there is surprisingly little systematic use of metabolomics
datasets for that purpose which simultaneously test hundreds of
compounds rather than just a few. Commercial use of organisms
in natural fermentation processes to create compounds such as
ethanol and citric acid has a long history. Traditional bioprocess
engineering comprises the design and optimization of the
equipment and methods required to produce these and other
biologically produced products efficiently.

The advancement of recombinant DNA technology allowed for
the direct modification and enhancement of metabolic
capabilities. As a result, metabolic engineering emerged as a
distinct field from bioprocess engineering. Metabolic
engineering is the (typically genetic) management of a live
organism's metabolic functions in order to establish and
maximize the production of desirable metabolites which are the
class of tiny molecules that form the primary resources and
intermediates of all cellular activity [2]. With a growing interest
in ecologically sustainable industrial technologies, metabolic
engineering is positioned to provide a cost-effective and efficient
method of creating a variety of small molecule compounds from
clean and renewable sources such as biofuels. Metabolic
engineering aims to maximize the synthesis of certain
metabolites in a cell whether these metabolites are produced
naturally by the organism or by entire foreign pathways added by
genetic engineering. The strategic small-scale observations and
flux computations have been critical tools for metabolic
engineering [3]. However the rise of systems-level analysis
prompted by whole-genome sequencing and the rapid collection
of data on RNA, protein and metabolite levels has opened up
new avenues for better understanding the impacts of strain

modifications. Outside of the targeted pathway, genetic
modifications frequently have additional effects and a better
understanding of the nature and extent of would lead to more
effective strategies for redesigning strains as well as a better
understanding of why a proposed design may fail to achieve its
predicted performance. Metabolomics the most recent of the
global analytic methodologies shares many similarities with its
predecessor sciences of genomics, transcriptomics and
proteomics.

Metabolomics analytical tools have now advanced to the point
where metabolomics datasets can serve as a good complement to
typical metabolic engineering methodologies. Metabolic
engineering's ultimate goal is to produce desired metabolites and
metabolomics provides a comprehensive and direct way of
analyzing how well a strain fits those goals [4]. The most basic
and direct application of metabolomics datasets is as an
extension of previous small-scale metabolite investigations
metabolomics allows for a more comprehensive assessment of a
strain than a handful of selected measurements. Studies that
take this method often compare strains and culture conditions
or attempt to track the time-course evolution of multiple
metabolite concentrations. These investigations make use of a
mix of observed growth and production characteristics as well as
direct assessment of metabolomics data [5]. Metabolomics is
used far less frequently in metabolic engineering than other
global analysis methodologies which may be due to the maturity
of domains such as transcriptomics and proteomics compared to
metabolomics. For metabolic engineering, proteomics,
transcriptomics, and genomes have frequently been integrated
with small-scale metabolite studies.
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