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ABSTRACT
Associations of oxidative stress with Cardiovascular Diseases (CVDs) are well established; however, the mechanism

underlying cardiac damage caused by Reactive Oxygen Species (ROS) is not fully understood. ROS are highly reactive

chemical molecules capable of damaging fundamental cellular molecules, including DNA, proteins, and lipids,

leading to metabolic alterations, ultimately resulting in cardiomyocyte dysfunction and heart diseases. This review will

discuss the current state of metabolomics technologies, the pathological implications of oxidative stress in cardiac

tissue, and the metabolic switches in the glucose, lipids, purine and pyrimidines, and glutathione metabolism

orchestrated by oxidative stress and their implications on cardiac diseases.
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INTRODUCTION
Oxidative stress is a state of imbalance between the production of 
reactive oxygen species and the endogenous antioxidant defense 
mechanisms, resulting in excessive ROS production, which is 
associated with the pathogenesis of multiple cardiovascular 
diseases [1-6]. ROS are highly reactive compounds containing 
oxygen, including OH (hydroxyl), O2

− (superoxide), ONOO− 
(peroxynitrite), and non-radicals such as H2O2 (hydrogen 
peroxide). Physiologically, antioxidant defenses are capable of 
controlling the levels of ROS by the activity of the antioxidant 
enzymes, including glutathione peroxidase, superoxide 
dismutase, and catalase. Conversely, an increase in ROS 
production that overcomes the antioxidant defenses leads to a 
series of cell damages, including DNA breaks, lipid peroxidation, 
and protein oxidation [7]. Indeed, the accumulation of oxidative 
damage is a common factor involved in CVDs progression. This 
review summarizes current knowledge regarding oxidative stress 
and its pathological actions on the heart, highlighting 
cardiomyocyte metabolic alterations and their implications for 
overall cell metabolism. Specifically, the function of the 
endogenous antioxidant defense mechanisms and the pathological 

alterations in the primary cellular source of ROS will be 
discussed and linked to the development of the most relevant 
myocardial-related diseases. Then, a discussion of metabolic 
switches orchestrated by oxidative stress in cardiac diseases 
will be presented in parallel with results reached by H2O2

-

induced oxidative stress in H9c  cardiomyocytes.

METABOLOMIC TECHNOLOGIES
The need to investigate different phenomena and improve 
techniques requires developing new tools. In recent years, we 
have seen in the area of life sciences the development of genetic 
engineering with CRISPR [8,9], improvement of bioinformatics 
[10], new pharmaceutical designs [11-13], and the use of omics 
[14-16]. The latter is a popular tool lately where large-scale studies 
are carried out to explore from genes to metabolites [17,18]. For 
studies on metabolism, we have metabolomics, a term 
introduced by Oliver Fiehn in 2001 [18]. In general, 
metabolomics can be defined as the comparison between the 
metabolome of an object of study in its standard and altered 
state, being those diseases, the ripening stage of a fruit, different 
growth sites of a plant species [18,19]. Its application was
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to electron leakage that, when reacting with O2, can produce 
Reactive Oxygen Species (ROS) [34]. Instead of being used to 
reduce O2 to H2O by the enzyme cytochrome C oxidase, these 
electrons migrate to the cytosol and react with O2, generating the 
superoxide radical [33,34]. This highly reactive compound 
derived from O2 is primarily produced in mitochondria; 
nevertheless, other sources of O2•−, such as NADPH oxidase, 
monoamine oxidase, and xanthine Oxidoreductase, produce 
ROS throughout different reactions (Figure 1) [35].

In response to the physiological production of ROS, eukaryotic 
organisms developed a range of defense mechanisms known as 
the antioxidant system. Such mechanisms are based on the 
reduction of ROS by enzymes, including Super Oxide Dismutase 
(SOD), catalase, and Thioredoxin (Trx), and by endogenous or 
non-endogenous biomolecules (e.g., glutathione, vitamins A, C, 
and E) [36]. Within the metabolic pathways that actively 
participate in the antioxidant system of organisms, glutathione 
metabolism plays a fundamental role. Glutathione (GSH) is the 
most important intracellular antioxidant. Its main action is the 
removal of HO•, ONOO−, CO3•−, and HOCl. In addition, in 
combination with the enzymes glutathione peroxidase and 
glutathione reductase, GSH acts in the removal of H2O2. The 
ability to consume cell-damaging species and its regenerative 
power made the glutathione system a robust antioxidant defense 
pathway [37]. However, cells undergo oxidative stress when the 
antioxidant defense is insufficient and the redox balance is 
disrupted, leading to cellular damage. Several studies highlight 
the link between oxidative stress and the pathogenesis of 
diseases, including CVDs [5].

PATHOLOGICAL IMPLICATIONS OF
OXIDATIVE STRESS IN
CARDIOVASCULAR DISEASES

General aspects

Cardiovascular diseases represent the leading causes of death 
worldwide, according to the World Health Organization [38]. In 
recent decades, with the increase in the incidence of cancer,
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facilitated by the development of Mass Spectrometry (MS) 
techniques, which is the most widely used tool.

Mass spectrometry, developed by J. J. Thomson in 1912 and 
improved by A. J. Dempster in 1918, is based on the ionization 
and fragmentation of molecules, generating a spectrum 
composed of the mass/charge ratio (m/z) of the fragments 
formed, which, when interpreted, provides information about 
the structures contained in a given sample [20]. Its use is 
frequent in metabolomics because of its high selectivity and 
sensitivity and the variety of commercially available equipment, 
allowing different couplings (e.g., GC-MS, HPLC-MS, and CE-
MS), ionization sources (e.g., EI, ESI, MALDI, and DESI), and 
mass analyzers (e.g., quadrupole, TOF, and Orbitrap) [21-25]. 
These instruments will generate different information about the 
samples, which complement each other. Since the type of sample 
and its preparation influence the choice of instruments, the 
advantages and limitations of the techniques must be aware [17]. 
GC-MS is primarily restricted to volatile and semi-volatile 
compounds, and its main disadvantage is the inclusion of a 
derivatization procedure in sample preparation [26,27]. On the 
other hand, it has high robustness, separation efficiency, 
reproducibility, and credibility in identifying small metabolites 
[26,27]. The LC-MS allows the analysis of different molecules 
with different polarities by varying its mobile phase, being 
employed the Reverse Phase Mode Chromatography (RPLC) for 
the study of more apolar molecules and the Hydrophilic 
Interaction Chromatography (HILIC) mode for more polar 
molecules [28,29]. In CE-MS, we have the separation and 
analysis of polar ionic compounds present in an electrolyte by an 
electric field applied to a capillary [30]. Due to its more complex 
construction than the other two instruments, careful 
optimization of the electrophoretic parameters is essential [31]. 
When using samples such as histological sections and cultured 
cells, imaging techniques such as MALDI (Matrix-Assisted Laser 
Desorption Ionization), SIMS (Secondary Ion Mass 
Spectrometry), and DESI (Desorption Electrospray) are typically 
used. Since the sample is in its native state, i.e., there is barely 
any sample preparation, there is little or no loss of metabolites 
during the analysis [24]. These techniques also allow the cells to 
be studied individually. This sub-area of metabolomics, known 
as single-cell metabolomics, has been widely pursued due to its 
great potential [32]. Given all the advantages and possibilities, 
metabolomic techniques have the potential to improve the 
understanding of heart diseases, enabling the discovery of new 
biomarkers and therapeutic targets.

CELLULAR METABOLISM AND REDOX
BALANCE
Redox reactions are constantly present in aerobic organisms, 
with their products participating in cellular metabolism. Among 
cellular components, mitochondria play a crucial role in the 
redox balance, being the primary source of ROS and 
antioxidants [33]. As is well known, the mitochondria are 
responsible for providing energy to the cell via oxidative 
phosphorylation performed in the mitochondrial electron 
transport chain. Among the five complexes responsible for this 
phenomenon, failures can occur in complexes I and III leading
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Figure 1: Redox reactions of eukaryotic cells, highlighting 
[red] Reactive Oxygen Species [ROS].



antioxidative therapies have been proposed to ameliorate cardiac 
hypertrophy by inhibiting the activity of NOX enzymes [57,58].

Furthermore, NOX activity was shown to be upregulated in 
patients with ischemic or dilated cardiomyopathies, which is 
associated with increased RAC1 activity [57,58]. NOX4 
constitutively produces hydrogen peroxide rather than O2•−. In 
heart tissue, NOX4 seems to be located at the membranes of the 
endoplasmic reticulum, nuclear envelope, and mitochondria. 
Several studies have reported a protective role of NOX4 in 
cardiac hypertrophy and against cardiac remodeling, regulating 
different transcription factors, such as NRF2, HIF1α, and ATF4. 
Briefly, the signaling pathways modulated by NOX4-enzyme 
serve to (a) limit oxidative stress, mitochondrial DNA damage, 
and cardiomyocyte death; (b) mediate cardiac remodeling and 
promote angiogenesis to protect the stressed hearts; and (c) 
activate autophagy in response to energy stress [59].

Xanthine Oxido Reductase (XOR)

Xantina Oxido Redutase (XOR) is also an important source of 
ROS in human hearts. This enzyme is expressed in the 
dehydrogenase form, but it is converted to the oxidase form 
under stress conditions. Both forms oxidate xanthine to uric 
acid, reducing NAD+ to NADH, in the case of the 
dehydrogenase form, and molecular oxygen to H2O2 and O2•−, 
in the case of the oxidase form [60]. In failing hearts, the level of 
XOR expression is increased when compared with normal 
myocardium [61]. Recent studies showed that XO inhibition 
improved myocardial efficiency and reverted left ventricular 
remodeling in dilated cardiomyopathy and myocardial infarction 
[61-63]. These results suggest that free radical production by 
XOR may be a significant cause of myocardial-related diseases.

Mitochondrial oxidative stress

Mitochondria are the predominant source of intracellular ROS, 
which are produced by the mitochondrial Electron Transfer 
Chain (ETC) as a byproduct of electron transfer. ROS 
generation in mitochondria is related to the partial reduction of 
O2 to O2•− by complexes I and III of the electron transfer 
chain. O2•− generated is rapidly dismutate to H2O2 by the Mn-
dependent superoxide dismutase [64]. However, other proteins 
may also trigger mitochondrial oxidative stress, such as the 
p66shc, MAOs, and NOX4 [64, 65]. Upon stress, p66shc 
translocates to mitochondria and contributes to mitochondrial 
ROS production by oxidizing cytochrome C and stimulating 
hydrogen peroxide production [66].

Excessive ROS production occurs during mitochondrial 
dysfunction resulting in damage to mitochondrial DNA and 
defects in the ETC function [64]. The resulting increase in 
H2O2 levels induces cell death and left ventricular dysfunction. 
Mitochondrial dysfunction has been shown to play an essential 
role in the development and progression of HF in a murine 
model of myocardial infarction [45, 53,67]. Targeting catalase to 
mitochondria prevents HF in response to pressure overload and 
neurohormonal stimulation [64]. Mitochondrial ROS 
production is also a critical factor in many diabetes-related 
cardiovascular diseases [67-69]. Indeed, mice fed with a high-fat
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obesity, and diabetes, in addition to the aging of the population, 
the risk of CVD has increased, in part due to the accumulation 
of oxidative damage [39]. Indeed, oxidative stress is a relevant 
factor in the development of cardiovascular diseases, including 
myocardial fibrosis and infarction, hypertrophy, and Heart 
Failure (HF). Thus, significant efforts have been made to 
elucidate the biomolecular alterations governed by oxidative 
stress and its consequences to CVDs progression [40-45].

The pathophysiological effects of ROS depend on their 
disponibility and site of production. Radical species with a 
shorter half-life are more unstable and toxic; conversely, the site 
of production and diffusion of the radical species throughout 
the cell and tissue impacts the surrounding molecules directly 
[46]. In pathological conditions, when ROS production 
overcomes the antioxidant defenses, ROS are able to cause 
oxidative modification of cellular macromolecules, such as 
DNA, lipids, and proteins [7]. Reactive oxygen species are a 
constant threat to DNA. DNA oxidation results in breaks that 
can generate mutations during the DNA repair, with the risk of 
disrupting genome function [47]. The genome instability and 
the mutagenic processes derived from oxidative stress are tightly 
linked to multiple age-related diseases, such as hypertension and 
diabetes [48,49]. Otherwise, the oxidation of lipids and proteins 
induces modifications in the sarcolemma and subcellular 
organelles, such as mitochondria and sarcoplasmic reticulum, 
impacting the production of energy and the metabolism of 
calcium. Such alterations may trigger cardiomyocyte dysfunction 
and death through apoptosis and necrosis, events linked to 
contractile dysfunction, impaired cardiac remodeling, 
hypertrophy, fibrosis, and HF [5,50,51]. Importantly, enzymatic 
sources for ROS, such as the Nicotinamide Adenine 
Dinucleotide Phosphate (NADPH) oxidase, Xanthine 
Oxidoreductase, Monoamine Oxidases (MAO), Cytochrome 
P450 Oxidase, and mitochondria are all considered relevant 
sources of ROS in CVDs, causing myocardial dysfunction. In 
the current topic, the most relevant sources of ROS in cardiac 
tissue will be summarized, and the related knowledge regarding 
pathological actions of oxidative stress on the heart will be 
discussed.

NADPH oxidases

Nicotinamide Adenine Dinucleotide Phosphate (NADPH) 
Oxidases (NOXs) are a family of multisubunit enzymes 
comprising membrane and cytosolic components responsible for 
transporting electrons across biological membranes, which leads 
to the reduction of oxygen into O2•−, in a reaction that 
consumes NADPH as an electron donor [52]. NOX 2 and 4 
represent the members that are expressed in cardiomyocytes. 
While NOX2 is a sarcolemmal enzyme activated by several 
stimuli such as angiotensin II, growth factors, endothelin-1, 
TNF-α, and mechanical forces [53,54]; NOX4, found in 
intracellular membranes, are constitutively active [53,56]. NOX2 
inactivation reduces the infarct area and ameliorates the 
development of heart failure in animal models of myocardial 
infarction. However, it is unclear whether this is related to 
vascular NOX or the NOX located in inflammatory cells [57]. 
NOX2-induced superoxide generation is also involved in 
angiotensin II-induced cardiomyocyte hypertrophy; thereby,
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metabolomic profile of cardiomyocytes undergoing oxidative 
stress.

Recently, in search of a model to explore the effects of oxidative 
stress, specifically in cardiomyocyte metabolism, Amaral et al. 
developed an in vitro platform to explore the metabolic switch 
induced by stressors agents on H9c  cardiomyocytes through 
LC/MS untargeted metabolomics technique [84]. As a result, 
the authors depicted metabolic alterations of glucose, lipid, 
pyrimidine and purine biosynthesis, and glutathione pathways 
in cardiomyocytes exposed to H2O2. Such modulations will be 
discussed in the context of cardiac diseases.

Glucose metabolism

Glucose metabolism is essential for life maintenance. 
Carbohydrates, lipids, and proteins are ultimately broken down 
into glucose, the primary metabolic fuel of mammal cells and 
the precursor for synthesizing several cellular compounds. 
Glucose transport into cardiomyocytes is regulated by 
transmembrane Glucose Transporters (GLUTs) [85]. In the 
cytoplasm, glucose is converted to glucose-6-phosphate and 
oxidized to pyruvate, transported into mitochondria, where it 
will be oxidized by the Tricarboxylic Acid (TCA) cycle [86].

Several studies have reported that mitochondrial glucose 
oxidation is defective in the failing heart [87,88]. Ussher et al. 
demonstrated that in HF, pyruvate dehydrogenase activity is 
decreased, which reduces pyruvate oxidation by the TCA cycle. 
As a result, glycolysis is increased, elevating the circulating levels 
of lactate [89]. Likewise, Amaral et al. showed an upregulation of 
glycolysis metabolites such as Glucose-6-phosphate (2.01-fold), 
Glycerol-3-phosphate (0.8-fold), and Lactate (1.59-fold) upon 
H2O2 exposed cardiomyocytes, indicating a shift of energy 
metabolism to anaerobic glycolysis as an adaptive response to 
oxidative stress [84]. The authors also identified the 
accumulation of citrate levels (0.48-fold) and an upregulation of 
amino acid biosynthesis pathways, indicating dysfunction of the 
citric acid cycle and a shift toward amino acid biosynthesis 
[84,90].

Interestingly, Frezza et al. reported the action of HIF-1α factor 
during oxidative stress to promote the expression of genes 
involved in shifting the metabolism towards anaerobic glycolysis, 
impairing the citric acid cycle activity to couple to oxidative stress 
[91]. Furthermore, in a rat model, glucose oxidation rates were 
increased during compensated phases of cardiac hypertrophy, 
while during HF, glucose oxidation was downregulated [92,93]. 
Another interesting study was published by Ranjbarvaziri et al. 
[94]. In order to identify the functional components governing 
Hypertrophic Cardiomyopathy (HCM), the most common 
heritable cardiovascular disease [95,96], authors performed 
metabolomics and transcriptomics experiments on human heart 
samples. The metabolomics approach revealed alterations in 
carbohydrate metabolism, which significantly decreased in 
HCM. The levels of glucose, glycolysis intermediates (fructose 6-
phosphate and phosphoenolpyruvic acid), pentose phosphate 
pathway metabolites (ribose 5-phosphate; ribulose 5-phosphate), 
and TCA cycle intermediates (malate, citrate, succinate) were 
downregulated, suggesting a global energetic decompensation.
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high-sucrose diet develop mitochondrial oxidative stress and 
cardiac hypertrophy [69,70]. An increase in mitochondrial 
oxidative stress was also described in the atria of diabetic and 
obese patients [71]. Likewise, in an insulin-dependent diabetes 
mellitus model, the mitochondrial generation of ROS leads to 
senescence and apoptosis of cardiac progenitor cells [68]. These 
data indicate that increased mitochondrial ROS production 
plays a crucial role in the pathophysiology of cardiac diseases.

Mono Amine Oxidases (MAO)

Mono Amine Oxidases (MAO) is another source of 
mitochondrial ROS. These enzymes are localized in the outer 
mitochondrial membrane and exist as two isoforms, MAO-A 
and MAO-B [72]. They are members of the flavoenzymes family, 
responsible for oxidizing biologically active amines in mammals, 
and are expressed at equivalent levels in the human heart [73]. 
MAO uses a FAD cofactor to catalyze the oxidative deamination 
of dietary amines, monoamine neurotransmitters, and 
catecholamines hormones, including serotonin, dopamine, 
norepinephrine, and epinephrine. The oxidative deamination 
generates toxic products (NH3) and H2O2 [74]. In acute or 
chronic stress situations, MAO-A is a source of deleterious ROS, 
resulting in cardiolipin peroxidation, cardiomyocyte death, and 
ventricular dysfunction [75-77]. Likewise, global deletion of 
MAO-B protects against oxidative stress, left ventricular 
remodeling, and prevents cardiac failure in a mouse model of 
congestive heart failure induced by transverse aortic constriction 
[78]. The cardiac protection of MAO-B depletion was confirmed 
by the generation of cardiac-specific MAO-B knockout mouse 
submitted to ischemia/reperfusion injury, suggesting that ROS 
generation by MAO-B contributes to cardiac injury under stress 
conditions [79].

OXIDATIVE STRESS AND METABOLIC
SWITCH IN CARDIAC DISEASES
Metabolomics has become a powerful research tool in 
cardiovascular disease as knowledge of the metabolic bases of 
CVDs advances. The ability to measure changes in metabolite 
concentrations and discover new biomarkers of different 
cardiovascular diseases has provided new insights into diagnoses 
and the development of new therapeutic approaches for CVDs. 
We highlight metabolic switches orchestrated by oxidative stress 
in cardiomyocytes cells, animal models, and human heart 
biopsies.

Oxidative Stress (OS) has been shown to play an essential role in 
the pathophysiology of the most severe cardiac diseases. As 
previously mentioned, a balance between the levels of Reactive 
Oxygen Species (ROS) and the antioxidant defenses is essential 
for cell health. Otherwise, excessive production of ROS that 
overcomes the antioxidant capacity causes damage to 
macromolecules, including protein, lipids, and DNA, and can 
trigger cell death [3,80-83]. However, although several signaling 
pathway studies and functional in vivo experiments have 
demonstrated the effects of ROS production in CVDs, scarce 
information is available about measurable changes in the
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pharmacological inhibition of ceramide biosynthesis enzymes 
ameliorates cardiac diseases, such as hypertension and 
cardiomyopathy [49]. Metabolic profiling studies have further 
highlighted the potential of such lipids to risk stratification and 
as biomarkers of heart disease [106].

Pyrimidine and purine biosynthesis

Oxidative phosphorylation, oxygen consumption, and ATP 
production are reduced during heart failure [107]. Ranjbarvaziri 
et al. showed evidence of heart decompensation of energy 
metabolism with a decrease in ATP, ADP, and phosphocreatine 
in HCM patients [93]. The authors also described a reduction in 
oxidative phosphorylation capacity through ATP synthase and a 
lower expression of several other mitochondrial complexes. An 
upregulation of the Uncoupling Protein 2 (UCP2) was also 
described. Next, the authors demonstrated that AMPK, the 
main sensor of cellular energy status [108, 109], was activated in 
hypertrophic hearts. These data suggest that despite increased 
metabolic demand and activation of AMPK in HCM hearts, 
decreased energy supply contributes to energetic deprivation.

Interestingly, Amaral et al. described a downregulation of the 
products UDP, CDP, and AMP of the pyrimidine and purine 
metabolism in cardiomyocytes under oxidative stress [83]. The 
downregulation of AMP levels was shown to maintain AMPK in 
its inhibited form [109]. When activated by energetic stress, the 
AMPK inhibits ATP-consuming pathways and triggers ATP-
producing pathways, such as fatty acid oxidation, glucose uptake, 
and glycolysis [110]. Amaral et al. suggest that oxidative stress 
induces a metabolic adaptation mechanism that allows cell 
survival and the reactivation of the anabolic pathways in H9c2 
cardiomyocytes after oxidative stress. Such differences described 
in the literature may be related to the multifactorial components 
of cardiac diseases. Future metabolomic experiments using 
isolated cardiomyocytes urge to clarify the impact of pyrimidine 
and purine metabolism on the evolution of this class of diseases.

Glutathione metabolism

As mentioned above, glutathione metabolism is the first line of 
defense against ROS, playing a pivotal role in the cardiovascular 
system [111]. Several studies have associated CVDs with redox 
imbalances in the heart, such as hypertension and 
atherosclerosis, linked to polymorphisms of the enzymes of this 
pathway [37]. Ranjbarvaziri et al. showed that patients with 
Hypertrophic Cardiomyopathy present high rates of oxidative 
stress in hearts, characterized by a high cystine level, low 
glutathione (GSH) disponibility, and an increased GSSG/GSH 
ratio (oxidized glutathione/reduced glutathione) [93]. Amaral et 
al. also reported a significant reduction of glutathione 
metabolite in cardiomyocytes under oxidative stress [83]. Studies 
that target oxidative stress as a therapeutic target have shown 
that the best strategy to improve its efficacy is to enhance the 
endogenous antioxidant capacity, increasing GSH levels 
[82,112]. Despite the knowledge concerning the antioxidant 
action of glutathione metabolism, the functioning of this 
pathway and its impacts on CVDs needs to be further clarified.

Amaral AG, et al.

Nowadays, it is accepted that alterations in glucose utilization 
vary depending on the etiology and severity of heart pathology, 
which possibly explains the discrepancy among the studies 
mentioned above [6].

Lipid metabolism

Several abnormalities in lipid metabolism have been identified in 
cardiovascular diseases. A  free  fatty acid crosses the  sarcolemma 
and enters the cytoplasm, where it can be converted into Acyl-
Coenzyme A (acyl-CoA). Thereafter, acyl-CoA is converted to 
acylcarnitine to enable its entry into mitochondria to be oxidized 
in the β-oxidization [86]. Changes in fatty acid oxidation rates or 
damage in mitochondrial β-oxidation can be reflected in 
acylcarnitines profiles since these metabolites are derivatives of 
fatty acyl-CoA [97].

In line with these findings, Amaral et al. recently demonstrated 
that L-carnitine was upregulated (1.9-fold) in H9c2 
cardiomyocytes under oxidative stress [84]. Wang et al. suggested 
that L-carnitine protects cardiomyocytes against doxorubicin-
induced oxidative stress and myocardial injury [98]. The 
upregulation of L-carnitine may be related to a reduction in 
intra-mitochondrial acetyl-CoA in response to mitochondria 
oxidative damage and reducing β-oxidation, as previously 
reported [99]. Hunter et al. demonstrated that the levels of 
acylcarnitines were increased among HF patients with preserved 
ejection fraction, and even higher levels were found in those 
with reduced ejection fraction [100].

Nevertheless, Bedi et al. found reduced levels of these 
compounds in end-stage HF patients compared to tissue from 
healthy ones [101]. Ranjbarvaziri et al. also described a decrease 
in the abundance of acylcarnitines in samples from HCM 
patients, suggesting a defect in converting free fatty acid to 
acylcarnitine. Consistently, mitochondrial carnitine O-
acetyltransferase, which catalyzes the conversion of acyl-CoA to 
acylcarnitine, was reduced. Moreover, the expression of genes 
involved in fatty acid β-oxidation was reduced in relation to 
normal hearts [94]. Decreased myocardial acylcarnitines might 
indicate impaired mitochondrial function and reduced β-
oxidation [102-104], which is in line with previous findings 
showing a reduction of fatty acid oxidation during more severe 
stages of HF [102,105]. This controversial finding among this set 
of studies may be explained by the inclusion or exclusion of 
diabetic patients, in which circulating acylcarnitines are often 
elevated, or by the severity of the cardiac diseases [6,88]. Future 
metabolomics studies considering aspects of subgroups or in vitro 
assays with isolated cardiomyocytes will contribute to clarifying 
these discrepancies.

Regarding the metabolites involved in the sphingolipid 
metabolism, Amaral et al. demonstrated an upregulation of 
sphingosine 1-phosphate (2.65-fold) and phytosphingosine (2.31-
fold) in H9c2 cardiomyocytes under oxidative stress [84]. In line 
with these findings, Ranjbarvaziri et al. showed an upregulation 
of ceramide and sphingomyelin in HCM patients [94]. 
Ceramides, derived from sphingomyelin metabolism, seem to be 
involved in the pathogenesis of cardiac diseases, causing 
lipotoxicity, inflammation, and cell death. Genetic ablation or
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Gabriel-Costa et al. [120,121] show evidence that elevated levels 
of lactate increase the expression of genes related to the lactate 
oxidation complex and NOX activity, resulting in ROS 
generation in cardiac muscle. These results suggest that 
metabolites derived from energy metabolism are high-potential 
candidates to cardiomyopathies biomarkers. 

Carnitine is another metabolite quoted to be a new 
biomarker of oxidative stress in cardiomyocytes. Responsible 
for the transport of fatty acids into the mitochondria for beta 
oxidation, the increase of its levels may be related to 
disorders of fatty acid oxidation, resulting in energy loss 
production in the heart [84]. On the other hand, reduced 
levels of carnitine may be related to its consumption as a 
cardiac antioxidant [99,122]. Changes in its levels have been 
discussed to be a therapeutic biomarker, but it is still necessary 
to clarify the metabolic regulation of carnitine under stress 
conditions. 

As for glutathione and its derivatives, the reduction in 
their levels during oxidative stress is remarkable, since 
they are key metabolites in antioxidant defense. It is likely 
that its function was exerted to reduce the effect of ROS on 
cardiac cells. However, as observed by Amaral et al. [84], the 
action of antioxidant species is not sufficient to prevent DNA 
damage and other changes in cardiac cells during oxidative 
stress. Despite this, Homma et al. [123] presents 
glutathione as a new candidate for therapeutic applications. 
Thus, to improve the therapeutic for cardiovascular diseases, 
more accurate diagnoses are required. To achieve this, 
metabolomics techniques can be used for the discovery of new 
biomarkers in heart disease and also to improve the 
understanding of the pathophysiology of diseases that affect the 
heart.

CONCLUSION
This review highlights recent advances in metabolomic profile 
applied to the characterization of the pathophysiology of the 
most relevant cardiac diseases, focusing on oxidative stress as a 
damaging agent. The advances in metabolomic platforms, 
predominantly based on NMR and mass spectrometry, enabled 
metabolomics to address the molecular mechanisms of cardiac 
diseases with implications for therapeutic efficacy and the 
discovery of new biomarkers for ameliorating the diagnostics. 
Furthermore, such techniques have enabled the description of 
shifts in the central metabolic pathways of cardiac cells under 
diverse oxidative stress conditions. We emphasized the 
discussion of metabolic switches in glucose, lipids, purine and 
pyrimidines, and glutathione metabolism, orchestrated by 
oxidative stress in cardiac diseases, and made a parallel with the 
results reached by H2O2-induced oxidative stress in H9c2 
cardiomyocytes. The advances in the knowledge on 
cardiomyocyte metabolic regulation by oxidative stress will help 
to identify new biomarkers and opportunities to develop more 
effective ROS-based therapies.
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DISCUSSION
Oxidative stress has been shown to play key roles in the 
pathophysiology of cardiovascular disease. Excessive ROS 
generation damages several biomolecules, impairing cellular 
metabolism [2-5]. Dysregulations of metabolic pathways due to 
excess ROS generation have been explored to characterize the 
metabolic fingerprint of cardiovascular disease. Emerging 
metabolomics technology allows the measurement of hundreds 
of metabolites in biological fluids, biopsies or cell cultures and 
thus provides significant information on potential new 
biomarkers for different cardiovascular conditions [113]. 

Several potential biomarkers have been discovered from 
current untargeted and targeted metabolomics approaches. 
Biomarkers can be defined as measurable biochemical species 
indicative of a biological process, pathogen or 
pharmacological response. In CVD, for example, high 
blood pressure is considered a biomarker for 
hypertension and troponins T and I for myocardial 
infarction [114]. However, for a molecule to be considered 
a biomarker, it must meet some plausibility criteria. In 
addition to the reproducibility of the experiments, in vitro, in 
vivo and/or in silico models should be used to establish a new 
biomarker [115]. However, the biggest challenges in this field 
lies, not only in metabolomics, but in all the techniques used in 
the search for biomarkers, in the variability of biological sample 
preparation and analysis methods, and in the multifactorial 
components of heart disease that vary in the population.

Although several in vivo experiments have demonstrated the 
effects of oxidative stress on CVDs, poor information is 
available on measurable changes in the metabolic profile of 
cardiomyocytes under oxidative stress. In this field, when 
metabolomics approaches are coupled to biochemical assays in a 
search for molecular alteration description, damage to 
mitochondrial DNA and modification of oxidizing enzymes are 
commonly described in cardiac diseases [55,56,60,61]. More 
recently, with the improvement of techniques, impacts of 
oxidative stress on overall heart metabolism have been explored 
[5]. For instance, studies have shown the impact of oxidative 
stress on the energy-yielding metabolism [116]. In order to 
maintain the needs of contractile elements and ion pumps, 
cardiomyocytes generate impressive amounts of ATP [6]. Besides 
oxidative phosphorylation, the creatine kinase system provides a 
faster mechanism to maintain ATP levels by rapidly transferring 
high-energy phosphates from phosphocreatine to ADP 
[5,117,118]. Evidence of energy metabolism dysregulation with a 
decrease in ATP, ADP, and phosphocreatine were shown in 
HCM patients [94]. Amaral et al. also showed a disruption of 
energy metabolism, with downregulation of the products UDP, 
CDP, and AMP of the pyrimidine and purine metabolism in 
H9c2 cells submitted to oxidative stress [84]. Several studies have 
shown that disruption of cardiac energy has a major role in 
heart failure [59,116,119]. 

Lactate also plays an important role in energy metabolism. 
Some studies have shown an increase in lactate levels in 
cardiac tissue under oxidative stress [84,89] due to the 
activation of anaerobic glycolysis. This event brings to light 
new functions of lactate that modulate lactate-sensitive 
genes involved in the regulation of cardiac muscle metabolism.  
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