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ABSTRACT

Isoprene is an industrially important five carbon compound primarily used for production of high quality synthetic 
rubber. Two major pathways are involved in isoprene synthesis. The mevalonate pathway is present in eukaryotes, 
archaebacteria and cytosol of higher plants whereas the non-mevalonate pathway exists in many eubacteria and 
plastids in algae/plants. There have been continuous efforts to study and understand the phenomenon of biological 
production of isoprene for more than half a century. Although, the current feasibility and cost advantage of 
chemical processes leading to production of isoprene seems to be far from being dominated by a suitable biological 
substitute, the fear of extinction of non-renewable resources (raw material for chemical processes) in the near future 
prompts for a colossal expectation from the synthetic biology community. Technological advances in the field of 
metabolic engineering have made it possible to vigorously modify and swap genes among different organisms and 
push the limits for microorganisms to over-produce isoprene to an enormous extent. This review touches upon the 
limitations faced while improving isoprene titres and the meticulous strategies used to overcome them. It analyzes 
recent approaches that have resulted in significant improvement of biologically produced isoprene, summarizes the 
lessons learned from them, and compiles an exhaustive list of potential gene targets that could facilitate prospective 
research in this widespread arena.
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INTRODUCTION

Isoprene, a naturally produced cell metabolite, is a volatile 
compound emitted from the leaves of many plant species. A 
brief history about the discovery of isoprene as a cell metabolite 
during the early second half of the twentieth century has been 
exquisitely described by Professor Guivi Sanadze, the person who 
published the first report of emission of isoprene from plants 
[1]. Speculations regarding the native role of isoprene dictates 
its function as a thermoprotectant and a potential plant defence 
mechanism against the invading parasites [2,3]. Isoprene is an 
important chemical used in the production of synthetic rubber, 
medicines and pesticides. The commercially valuable isoprenoid 
family of organic compounds are produced using isoprene 
as a monomeric building block. Chemical synthesis of such 
isoprenoids is hindered by factors which include depletion of 
fossil fuels and the complexity of the molecules. Harvesting of 
isoprene which is gaseous above 34°C from plants is not feasible 
and therefore isoprene is exclusively produced through chemical 
synthesis from petrochemicals [4,5]. With the recent advances in 

synthetic biology/metabolic engineering, isoprene production by 
microorganisms is a feasible and attractive alternative. Anticancer 
compound taxol and antimalarial drug artemisinin are both 
commercially produced by microorganisms with engineered/
modified isoprenoid pathways [6,7]. Several studies and patents 
in recent times demonstrating genetic modifications enhancing 
production of isoprene from microorganisms have been 
published.

MECHANISM OF ISOPRENE PRODUCTION

Biosynthesis of isoprenoids is from the basic building blocks 
isopentenyl diphosphate (IPP) and dimethylallyl diphosphate 
(DMAPP) which are synthesised from two naturally occurring 
pathways-methylerythritol 4-phosphate (MEP) pathway and 
mevalonate (MVA) pathway. The removal of pyrophosphate 
from DMAPP results in generation of isoprene and is catalysed 
by an enzyme, isoprene synthase. It is considered as a key enzyme 
involved in biosynthesis of isoprene and is usually found in the 
chloroplasts of various plant species [8-10]. Several variants 
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of isoprene synthases have been identified and tested towards 
improving isoprene production [11-13]. Moreover, certain bacterial 
species such as Bacillus subtilis are also known to produce isoprene 
naturally despite lacking a homolog of isoprene synthase from 
plant sources [14-16].

METABOLIC ENGINEERING OF MEP 
PATHWAY 

The MEP pathway is of prokaryotic origin and present in most 
bacterial species, including Escherichia coli and B. subtilis, as well as 
plastids in plants and blue green algae [17,18]. Intricate regulatory 
control of this pathway has given rise to a prodigious demand for 
its extensive in-depth exploration, particularly in heterologous 
hosts. Optimizations of the MEP pathway are worth pursuing since 
the calculated theoretical yields of isoprene from glucose are higher 
with MEP as compared to the MVA pathway. IPP and DMAPP 
synthesis via this pathway requires glyceraldehyde-3-phosphate 
and pyruvate as initial substrates. The common bacterial host 
in metabolic engineering viz. E. coli, uses the MEP pathway and 
it consists of seven enzymatic reactions (Figure 1). The genes 
identified as bottlenecks in various studies are dxs, dxr and idi 
[19-21]. Other studies have identified overexpression of IspD, IspF 
and IspE which resulted in increased production of isoprenoids 
[22-24]. The observed efflux of methylerythritol cyclodiphosphate 
(MEC) has also been noted as a rate limiting step in isoprenoid 
production. Overexpression of IspG, which is an iron-sulfur 
cluster protein in the MEP pathway, led to diminished MEC efflux 
thereby bypassing the bottleneck and enhancing the production of 
isoprenoids [25]. Bacillus subtilis

Escherichia coli

Efforts to improve isoprene and isoprenoid production in 
E. coli have focused on the overexpression of (a) endogenous 
MEP pathway genes as well as (b) heterologous genes [26,27]. 
In case of the native MEP genes, the pathway constructs were 
cloned as one super operon into a suitable expression plasmid 
where transcription was driven from a strong promoter and a 
translation initiation region placed in front of each gene. In this 
study, isoprene production titre with modifications of the MEP 
pathway improved up to 3.04 mg/L [26]. Overexpression of dxs/
dxr/idi in the specific order consistent with that of the metabolic 
pathway resulted in a production yield of 2.7 mg/g/h [19]. In case 
of heterologous expression, overexpression of dxs and dxr genes 
from B. subtilis in E. coli resulted in an enhancement of isoprene 
production giving a yield of 314 mg/L [27]. Besides, Type II idi 
when expressed in E. coli was found to enhance the production 
of lycopene in comparison with the Type I idi [28]. Yang et al. 
reported an approach with hybrid MVA pathway utilizing upper 
pathway genes from Enterococcus faecalis possessing mvaS A110G 
mutant and achieved 6.3 g/L isoprene titre [29]. Combinatorial 
approaches towards combining MVA and MEP pathways have also 
yielded promising results producing 24 g/L isoprene [30].

Bacillus subtilis 

This organism’s fast growth rate and GRAS (generally recognised as 
safe) status makes it a promising microbial host for the production 
of isoprenoids. Overexpression of DXS resulted in production of 
3.73 ng/ml/OD600 while overexpression of both DXS and DXR 
gave nearly identical yields but resulted in the loss of diauxic growth 
of the strain [31]. Amorphadiene, the precursor of the anti-malarial 
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Figure 1: Pathways. 
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drug Artemisinin, was produced at ~20 mg/L with overexpression 
of DXS, IDI and ADS (Amorpha-4,11-diene Synthase) coupled with 
protein translation engineering and systematic media optimization 
[32].

Saccharomyces cerevisiae

Replacing the endogenous MVA pathway with a synthetic bacterial 
MEP pathway while using an integration based approach was 
unsuccessful and growth could not be restored. However, bacterial 
MEP genes on an expression plasmid were able to sustain S. 
cerevisiae growth in the presence of very well-known mevalonate 
pathway inhibitor lovastatin [33]. Amorphadiene, the precursor of 
the anti-malarial drug Artemisinin has been successfully produced 
in S. cerevisiae with manipulations of the MVA pathway with yields 
of 40 g/L [34]. Directed evolution of isoprene synthase coupled 
with perturbation of gal regulon in S. cerevisiae resulted in 3.7 g/L 
of isoprene [35].

Synechocystis sp. PCC 6803

Recently, cyanobacteria have been explored as “green” 
environment friendly alternate hosts for production of isoprene 
[36]. Heterologous overexpression of fni from S. pneumoniae 
along with the overexpression of ispS gene as a fusion construct 
with the highly expressed cyanobacterial cpcB gene encoding the 
β-subunit of phycocyanin resulted in more than 60 fold increase 
in isoprene production in the type strain Synechocystis sp. PCC 
6803 [37]. A benchmark level of 12.3 mg isoprene per gram dry 
cell weight was achieved using the autotrophic photosynthetic 
route. In anticipation of freshwater becoming a limiting factor 
for autotrophic mass production of biofuels in future, research 
on cultivation of these freshwater cyanobacteria at different 
concentrations of NaCl has also been instigated [38-40].

The metabolic regulatory constraints of the MEP pathway restrict 
it to a confined boundary despite the multidimensional efforts 
in diverse arenas; some of which are listed above. There exists 
an immediate requirement for better understanding of cellular 
functioning and concomitant development of advanced molecular 
engineering tools that could precisely predict and bypass the 
possible bottlenecks to fast-track the scientific progress made so far 
in the field. 

METABOLIC ENGINEERING OF MVA 
PATHWAY

The predominant metabolic pathway engineering attempts for the 
microbial production of isoprenoid family of compounds have 
focused on the MVA pathway due to the obvious advantage of 
not being subject to as tight regulation as for the MEP pathway. 
It is further classified as upper pathway that leads to synthesis 
of mevalonate followed by the lower pathway that consumes 
mevalonate to synthesize IPP/DMAPP. In one attempt, the upper 
pathway was cloned from E. faecalis and the lower pathway from 
S. pneumoniae along with the addition of an extra thiolase (atoB) 
which resulted in the increased yield of isoprene [26,41]. 

The efficiency of MVA pathway was improved in order to 
increase MVA production; the source of the “upper pathway” 
which contains HMG-CoA synthase, acetyl-CoA acetyltransferase 
and HMG-CoA reductase to convert acetyl-CoA into MVA was 
changed from S. cerevisiae to E. faecalis [29]. Replacing the S. 
cerevisiae MVA upper pathway genes with those from Staphylococcus 
aureus resulted in doubling of production titres of Amorpha-4,11-

diene [42]. Comparison of upper and lower MVA pathway genes 
from S. pneumoniae, E. faecalis, S. aureus, Streptococcus pyogenes 
and S. cerevisiae was carried out and the highest production of 
β-carotene was seen where the upper pathway was from E. faecalis 
and lower pathway from S. pneumoniae [43]. In the case of isoprene 
production, yields of up to 60 g/L were achieved with upper 
and lower pathway from S. cerevisiae with an additional copy of 
the mvk gene from Methanosarcina mazei [5]. Control systems for 
heterologous metabolic pathways predominantly rely on swapping 
of promoters [6,44]. The pmk and mk genes, previously identified 
as the bottlenecks were placed under a much stronger promoter 
as compared to the other genes [45]. To further enhance the 
production of isoprene, mvaS gene was modified replacing an 
alanine 110 with glycine. With these modifications, isoprene was 
produced up to 6.3 g/L after 40 h of fed-batch cultivation [29].

STRATEGIES BASED ON PLASMIDS AND 
CHROMOSOMAL INTEGRATIONS

The metabolic burden from DNA, RNA and protein synthesis of 
the cell is increased if it has to maintain multiple plasmids [46]. It 
is further increased due to the total number of antibiotic resistance 
proteins that the cell has to produce [47]. This often leads to low 
yields of the desired metabolite, therefore endeavours to have all 
the genes on a single plasmid have proved more efficient [45]. 
Successful isoprene production was seen with some genes of the 
pathway integrated into the chromosome while the remaining 
pathway plus additional accessory genes were expressed on two 
different plasmids [5].

Plasmid based expression systems have several drawbacks which 
include segregational instability or allele segregation and possible 
structural instability which may reduce the amount of production 
of compound of interest [48]. Additionally, antibiotics required 
for selecting and maintaining plasmids in the host during 
fermentation result in increased costs. A more stable and reliable 
approach is integration of heterologous genes or multiple copies of 
the host genes using suitable integration vector into the bacterial 
attachment (attB) site of E. coli using helper plasmids which express 
the phage integrase, by direct transformation [5,22,49]. Another 
strategy available for chromosomal integration is the Lambda-Red 
recombinase system in combination with the Flp/FRT site-specific 
recombination system for marker excision [50,51].

To achieve the high copy numbers for the production of metabolites, 
the desired pathway genes are first integrated into the genome and 
then can be evolved to the desired gene copy numbers by the process 
of chemical induction resulting in chemically induced chromosomal 
evolution (CIChE) [50]. To further remove the drawback of the 
presence of the antibiotic selection marker, existing variants of the 
CIChE technique could be readily employed [49].

ENHANCING FLUX TOWARDS ISOPRENE

Distinct studies have been attempted to increase the flux of 
substrates towards the relevant pathway and to prevent the efflux of 
intermediates from them. Some of the examples include attempts 
to increase the amount of acetyl CoA substrate for the MVA 
pathway. atoB overexpression has also been shown to be effective 
to an extent [26]. Overexpression of aceto-acetyl transferase (pho) 
from R. eutropha was found to be effective in increasing acetyl CoA 
substrate flux [43]. In certain host strains such as E. coli BL21, which 
has low phosphogluconolactonase (PGL) activity resulting in low 
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carbon flux through the pentose phosphate pathway, constitutive 
overexpression of PGL along with the rest of the MVA and ispS 
gave titres of 60 g/L [5].

Overexpression of certain MEP pathway enzymes resulted in the 
efflux of MEC indicating the existence of a novel competing pathway 
branch in DXP metabolism. To overcome this, overexpression of 
ispG was found to effectively reduce the efflux of MEC outside the 
cells [25]. Proteins encoded by ispG and ispH are metalloproteins 
with Fe-S clusters. Overexpression of fpr (flavodoxin reductase) and 
fldA (flavodoxin I), iron-sulfur cluster-interacting redox polypeptide 
along with ispG and ispH increased isoprene productivity to 600 
µg/L/h [52-55]. A list of potential overexpression targets compiled 
from several references is summarized in Table 1 [52-66].

Systematic and combinatorial analysis to ascertain potential gene 
knockout targets for improving lycopene production in E. coli led 
to the identification of three genes viz. glutamate dehydrogenase 
(gdh), pyruvate dehydrogenase (aceE) and formate dehydrogenase 
(fdh) [61]. A combinatorial knockout of all the three genes resulted 
in 40% improved yield [67,68]. A list of potential knockout targets 
compiled from several references is summarized in Table 2 [69-78].

Moreover, computational analysis performed using genome scale 
modelling (data not shown) suggested certain DNA-binding 
transcriptional regulators as targets that could largely improve 
the isoprene titres [69,70]. These targets include global regulators 
like cra (Catabolite Repressor Activator), fis (Factor for Inversion 
Stimulation), arcA (Regulator for respiratory and fermentative 
metabolism under microaerobic/anaerobic conditions) and iclR 
(Isocitrate Lyase Regulator); the expression of which could be 
delicately modulated in combination with the above mentioned 
overexpression and knockout targets accordingly [71-73].

RATIONAL PERTURBATIONS OF METABOLIC 
PATHWAYS FOR YIELD ENHANCEMENT

Increasing copy numbers of heterologous or homologous genes 
for the desired product will result in increased titres only up to a 

certain point. Beyond this, to improve the yields, other strategies 
have to be employed. The efficiency of expression will also be 
affected as the cell has to maintain many copies within the cell. 
By chromosomally integrating the desired genes, the problem of 
vector load and maintenance are possibly bypassed. However, this 
does not rule out the cells own expression apparatus or precursor 
limitation. Various strategies proposed to optimize yields include:

Precursor balancing: Precursor balancing is an indispensable tool 
towards achieving increased yield of desired metabolites. A few 
examples and strategies applied in the past for precursor balancing 
are described. Isoprenoid production via MEP pathway requires 
equimolar quantities of G3P and pyruvate [74-76]. The imbalanced 
supply of G3P and pyruvate precursors persists to be the main 
bottleneck of the MEP pathway. One possible way to manipulate 
the ratio between G3P and pyruvate, is to alter the flux of the 
phosphoenolpyruvate (PEP) to pyruvate interconversion, which is 
controlled by the enzymes pyruvate kinase (Pyk) and PEP synthase 
(Pps). Pps converts pyruvate to PEP and thus overexpression of pps 
resulted in a five-fold increase in lycopene yield over the wild type 
strain (25 mg/g dried cell weight). Moreover, the deletion of pyk 
also increased lycopene production with similar enhancements as 
observed with overexpression of other gluconeogenic and glycolytic 
enzymes [77-97]. In a separate study, the deletion of competing 
phosphotransferase system which otherwise consumes PEP also 
resulted in enhanced lycopene production [82]. It has also been 
shown that mere deletion of gap A gene which prevents conversion 
of G3P to glycerate 1,3-bisphosphate makes more G3P available 
for funnelling into the MEP pathway [77-80]. On the other side, 
overexpression of gapB (NADPH-dependent glyceraldehyde-3-
phosphate dehydrogenase) and fbp (fructose-1,6-bisphosphatase) 
resulted in increased yield of riboflavin [81,82]. It is imperative to 
remember that the relative regulation of metabolic flux through 
the glycolytic and the gluconeogenic pathways play an important 
role in central carbon metabolism.

There are four main glycolytic pathways that serve as feeding 
modules which generate pyruvate and G3P from sugar substrates: 

Sr. no. Gene name Process / Molecule targeted Reference

1 galP; glk Metabolism [52]

2 gld Isoprene [53]

3 ompF, ompE, ndk, cmk, fbaA, fbaB, ompC, adk, pfkA, pfkB, pgi, pitA, tpiA, ompN Lycopene [54]

4 gapB, fbp, pckA Riboflavin [55]

5 ppc, pck Succinate [56]

6 PEPCK Succinate [57]

7 yhfR, nudF IPP, DMAPP, Isopentenol [58]

8 pck, pps, rpoS, appY, yjiD, ycgW, wrbA, atpE Lycopene [49]

9 appY, crl, rpoS Lycopene [59]

10 yggV + lpxH + hisL + ppa + cdh Isoprenol/prenol [60]

11 nuo, cyoABCD, cyAB, sucAB, talB, tktA, gltA, sdhABCD β-Carotene [61]

12 yajO, rib Terpene [62]

13 zwf, gnd Riboflavin [63]

14 pps Lycopene [64]

15 glf, glk  Shikimic acid [65]

16 erpA, fldA, fpr, iscA Fe-S cluster [66]

17 TpiA; OmpN Lycopene [54]

Table 1: List of potential targets to be overexpressed. 
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• EMP (Embden–Meyerhof–Parnas) 

• ED (Entner-Doudoroff) 

• PP (Pentose phosphate) 

• Dhams 

These pathways were investigated as feeding modules for increasing 
isoprene production. Highest isoprene production was seen with 
overexpression of the EDP in which pyruvate and G3P were 
generated simultaneously in contrast to EMP. In terms of precursor 
generation and energy/reducing-equivalent supply, overexpression 
of both EDP and PPP was found to be the ideal feeding module 
for MEP. Blocking EDP by knocking out pgi almost completely 
channelled the glucose through PPP and resulted in a significantly 
increased isopentanol production [83].

Reducing carbon loss: It is well established that bacterial growth 
using sugar substrates lead to production of secondary metabolites 
such as acetic acid, lactic acid, formic acid and ethanol; hence it is 
desirable to redirect this wasteful carbon towards the MEP pathway 
for higher production of isoprenoids. The genes which control the 
production of these secondary metabolites include ackA, pta, ldh, 
pflB, poxB and adhE. Reducing expression or knockout of these 
genes can result in making more carbon available for enhanced 
production of the desired metabolite. One such example was 
demonstrated for the production of pyruvate from glucose. 
Multiple gene deletions (ackA, pflB, ldh, adhE) resulted in an 
increase in pyruvate while acetate production was reduced by 85% 
[84]. For the production of ethanol from glycerol, knockout of the 
ldh gene resulted in up to 90% of its theoretical yield while lactate 
was reduced [85-88].

Sr. no. Gene Name Process / Molecule targeted Reference

1 iclr; arcA Metabolism [69]

2 cra Sugars [70]

3 atpFH; adhE; sucA; poxB; ldhA; frdBC; pflB; ackA Pyruvate [71]

4 ldhA; pflB Metabolism [72]

5 pts1 Metabolism [52]

6 pts; pgi; zwf; gnd; pyk; ppc; pckA; lpdA, pfl Metabolism [73]

7
cyaA; pts1; crr; pfkA; pgi; ptsG; ihfA; ihfB; fis; pstH; atpCDEF; sucA; sucB; lpdA; 
sdhCDAB

Metabolism [74]

8 maeB; frdA; pta; poxB; ldhA; zwf; ndh; mdh; sfcA Ethanol [75]

9 galK Isoprene [53]

10 tdh; tdC; sst; rhtA23 Threonine [76]

11 deoB; yhfW; yahI; pta; eutD; arcC; yqeA; gdhA; ppc; pta; serA; thrC Lycopene [54]

12 sr1; gapB; pckA; gapA; ccpN Metabolism [77]

13 ldhA; pflB; ptsG; pepCK Succinate [57]

14 ppsA; poxB; aceBA Metabolism [78]

15 iclR; gdhA; aceE Lycopene [49]

16 cra; edd; iclR Metabolism [79]

17 hnr; yliE Lycopene [80]

18 arcA Metabolism [81]

19 nudF Isoprenol/Prenol [60]

20 ptsHIcrr operon Isoprenoids [82]

21 pgi; gnd Isoprene [83]

22 gdhA; gpmA; gpmB; aceE; fdhF; talB; fdhF Lycopene [67]

23 eno Lycopene [67]

24 gapA; mgsA; gapB; pgk; zwf; edd; eda Metabolism [84]

25 pgm Metabolism [85]

26 gapA Coenzyme Q10 [86]

27 ptsG Metabolism [87]

28 thrA Metabolism [88]

29 glnA Bio-fuels [89]

30 serA Succinate [90]

31 fabD Metabolism [91]

32 rpiA Metabolism [92]

33 talA; talB Metabolism [93]

34 tktB Metabolism [94]

35 rpe Metabolism [95]

36 gntK Metabolism [96]

Table 2: List of potential targets to be knocked out. 
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Increasing energy equivalents: Three reducing equivalents 
(NADH/NADPH) and three moles of ATP are required for 
biosynthesis of isoprene via the MEP pathway. A few of the 
recent studies have shown that moving the flux towards PPP 
results in an increase in the NADPH pool which facilitates 
isoprenoid production. Overexpression of genes controlling ATP 
synthesis and NADPH production led to increase in β-carotenoid 
production by 21% and 17% respectively [89-92]. Overexpression 
of zwf and gnd which enhance NADPH production led to an 
increase in riboflavin by 18% and 22%, respectively [93-96]. Some 
of the strategies applied for other metabolites such as arginine 
could be adapted for isoprene production in E. coli, for example, 
increasing the reducing equivalents pool (NADPH) within the cell 
was found to improve ornithine production [97]. In a study, the 
use of B. subtilis rocG which encodes NAD-dependent glutamate 
dehydrogenase allowed conversion of α-ketoglutarate to glutamate 
in an NADPH-independent manner and making more NADPH 
for ornithine biosynthesis [98]. Increasing the NADPH level was 
also achieved by inactivating two putative gluconate kinases (gntK) 
in C. glutamicum [99]. Overexpression of the ATP-dependent NAD 
kinase encoded by ppnK also led to enhance ornithine production 
in case of the same organism mentioned above [100].

Optimizing growth rate: Isoprene production is growth associated. 
Manipulation of global gene regulators affects cellular growth. For 
example, deletion of iclR and arcA genes resulted in 47% increase 
in biomass (in glucose abundant conditions). Modulation of the 
NADH: Ubiquinone oxidor-eductase (nuo), cytochrome bd-I 
oxidase (cyd), cytochrome b oxidase (cyo) and ATP synthase (atp) 
gene operons resulted in 20%, 16%, 5% and 21% increase in β 
carotene production respectively. Modulation of the nuo operon 
resulted in 29-40% decrease in cell mass [61].

GROWTH CONDITIONS AND MEDIA 
STANDARDIZATION
An effective method to increase cell density and production 
of metabolites is optimization of growth medium. The organic 
carbon supplement has an impact on the isoprene yield. Maximum 
production of isoprene was seen with glycerol as compared to other 
sources such as fructose and xylose [26]. Also, glycerol resulted 
in maximum production of β-carotene and lycopene in discrete 
studies and was shown to be superior to other carbon sources such 
as glucose, galactose, xylose and maltose [43,82]. Pyruvate and 
dipotassium phosphate as supplements were found to be beneficial 
for isoprenoid production possibly indicating enhanced pathway 
flux [32]. However, monopotassium phosphate was found to be 
dominant factor for the production of lycopene [82].

The source of nitrogen in the growth medium also plays an 
important role is improving biosynthesis of the product. Beef 
extract from a particular source was found to significantly increase 
α-pinene production as compared to other nitrogen sources 
[44]. Carbon and nitrogen restrictions during the process of 
fermentation resulted in significant enhancement of amorpha-
4,11-diene production [42,101-104].

CONCLUSION
If we look back and attempt to estimate the progress achieved 
in terms of basic research on the subject, despite more than 
sixty years of intense research, the exact reason behind how 
evolutionary selection pressure has rendered some plants capable 
of synthesizing isoprene and others not still remains to be unveiled. 

This understanding could help us to predict how the future 
environmental changes would affect the capacity of plants to 
produce isoprene. The MEP pathway in particular seems to be yet 
in its nascent stage and demands a lot more effort to understand 
the overall fine-tuned regulation of the entire pathway and its 
significance. In terms of production titres, metabolic engineering 
of MEP and MVA pathways have significantly aided an upsurge 
in the production of isoprene from microbial sources and still 
has a lot more potential for further improvement with an optimal 
control guided in tactful manner. It is a continuous learning and 
development process. The design-build-test-debug approach for 
driving isoprenoid production in E. coli described recently by Wang 
et al. exemplifies one such continuous process towards achieving 
maximally improved production titres rapidly approaching the 
theoretical limits. An interesting synergistic approach combining 
the MVA and MEP pathways was recently pursued to utilize the 
merits of both the pathways in a well-balanced manner towards 
producing isoprene. Looking at the current societal consumption of 
non-renewable resources, there exists a huge demand for isoprene 
based alternate biofuel candidates. Scientists are developing 
novel strategies to explore current know-how about the biological 
functioning of the microorganisms and expand the limits further.
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