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Abstract
Understanding the regulation and control of the expression of genes encoding metabolic enzymes is crucial for 

production using microbes. To overcome technical difficulties involved in identifying regulatory network systems, 
we designed a DNA motif finding procedure combining transcriptome and genome sequence data. Here, we used 
the ArcAB two-component system of Escherichia coli, which controls genes involved in the TCA cycle and energy 
metabolism, as a model to identify DNA motifs involved in gene-expression regulation. DNA-array data were used 
to extract up-regulated genes from ΔarcA and ΔarcB E. coli strains, and the upstream sequences were subjected 
to DNA-motif finding. Sequence similarity and conserved residues identified the known ArcA-binding motif and a 
novel DNA-motif candidate that was estimated to be related to YdcI, a putative LysR-type transcriptional regulator. 
A hypothetical YdcI-binding motif was found upstream of the gltA gene, suggesting that YdcI might control the 
carbon flux into the TCA cycle. To verify this, l-glutamic-acid production and citrate synthase activity in the ydcI 
gene-amplified strain were investigated. Our findings suggested that YdcI is a transcription factor that regulates the 
expression of gltA and other genes, and controls the carbon flux into the TCA cycle.
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Introduction
Rapid advances in DNA-sequencing technology and bioinformatics 

have so far provided more than 2,000 microbial genome sequences, 
huge quantities of omics data, and more than 1,000 biological databases 
[1,2]. A key challenge of the post omics era is how to acquire novel 
knowledge based on these data. 

From the viewpoint of useful substance production based on 
fermentation technology, yield improvements are necessary and have 
been achieved through advances in metabolic engineering technology, 
including releasing metabolic or genetic regulation, eliminating 
feedback inhibition, and overcoming rate-limiting reactions [3]. For 
example, 13C-based metabolic-flux analysis provides information 
from inside the cell that can be used to identify rate-limiting steps [4]. 
Further, comparative genomics reveals phylogenetically conserved 
transcriptional regulation and provides important information about 
metabolic regulation [5]. However, it cannot provide information 
related to novel transcriptional regulation, as this requires prior 
knowledge. Systematic Evolution of Ligands by Exponential 
Enrichment (SELEX) technology or the combination of chromatin 
immunoprecipitation with DNA microarrays (ChIP-chip) can show 
the most likely binding sites of each transcriptional factor, and is useful 
for regulatory network identification [6,7]. Although these analytical 
approaches are exhaustive, they are less useful in understanding 
metabolic regulation during fermentation. 

The integration of dynamic gene-expression pattern data and 
static genome sequences allows common DNA-sequence motifs to be 
extracted from the upstream regions of commonly regulated genes, 
in order for activated metabolic regulation to be identified [8-10]. If 
known DNA-sequence motifs are found, the specific DNA-binding 
protein might be important in the relevant process. However, several 
difficulties remain with this approach, including the identification of 
unknown DNA-sequence motifs or those with no annotations of the 

gene-regulatory region. Moreover, multiple local-alignment tools such 
as Multiple EM for Motif Elicitation (MEME) or Gibbs sampler have 
input-sequence length limitations [11]. 

To overcome these difficulties, we designed an efficient DNA 
motif-finding system to identify metabolic and genetic regulators of 
fermentation phases using both transcriptome and genome sequence 
data, without the need for regulatory information. To validate our 
method, we chose the ArcAB two-component regulatory system of 
Escherichia coli, as ArcAB regulates the bacterial transition from aerobic 
to anaerobic growth and controls more than 100 genes involved in the 
TCA cycle and energy metabolism [12,13].

DNA-array data for both arcA and arcB gene-deletion strains were 
used to classify genes with increased expression levels in ΔarcA and 
ΔarcB strains [14]. We explored DNA-sequence motifs in the upstream 
regions of these genes, based on the assumption that they should have 
more than 55% identity with high average information content (IC). 
This was successfully applied for the ArcA-binding DNA-motif search, 
which we evaluated with a known ArcA-binding DNA-sequence motif 
using Shannon entropy and semi-global alignment with no penalty for 
end gaps. Furthermore, we identified a putative regulatory network 
mediated by YdcI that was annotated as a LysR-type transcriptional 
regulator with an unknown biological function. As the hypothetical 
YdcI-binding motif was found upstream of the gltA gene, we predicted 
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that YdcI regulated the carbon flux into the TCA cycle; we confirmed 
this by testing l-glutamic acid production and citrate synthase activity 
in ydcI gene amplification or deletion strains. YdcI was shown to 
control the carbon flux through the regulation of gltA expression.

Materials and Methods
Strains, plasmids and culture conditions

The strains and plasmids used in this study are summarized in Table 
1. E. coli MG1655 ΔsucAΔydcI was constructed by ydcI gene deletion 
from E. coli MG1655 ΔsucA [15] according to Datsenko and Wanner 
[16]. Briefly, the PCR primers 5′-aaggagggatcgacagatcccttcacctttcagaac-
ggcattgattttcgtgaagcctgcttttttat-3′ and 5- ggagtgtaggtaaccgcattcactctt-
gcgggaagaatttacaaactgtgcgctcaagttagtataaa-3′ were used to amplify a 
fragment that replaced the cat gene. The pMW118-λattL-CmR -λattR 
plasmid was used as a PCR template [17] and the pKD46 plasmid was 
used for Red recombination [16]. Plasmid pMW- λint-xis encoding 
λXis/Int recombinase was used to eliminate all DNA fragments that 
were flanked by λattL/R sites [18]. The pMW218-ydcI plasmid was then 
constructed using the PCR fragment containing the ydcI gene and its 
upstream region. The PCR primers 5′-gcggatcctcgaatgtaccggca-3′ and 
5′-gcaagcttggagggatcgacaga-3′ were used to amplify a fragment that 
was digested with BamHI and HindIII, and ligated into the pMW218 
vector. 

For manipulation, cells were grown in L-broth containing 10 
g BactoTryptone (Difco, Japan), 5 g yeast extract (Difco), and 10 g 
NaCl/L distilled water, or in T-broth containing 12 g BactoTryptone, 
24 g yeast extract, and 8 ml glycerol/L distilled water, adjusted to pH 
7.0 with potassium phosphate buffer. Cultivation for l-glutamic acid 
fermentation was performed for 24 h at 37°C in a 500-ml shaking flask 
with a working volume of 20 ml in MS medium containing 40 g glucose, 
1 g MgSO4·7H2O, 24 g (NH4)2SO4, 1 g KH2PO4, 10 mg FeSO4·7H2O, 
8.2 mg MnSO4·4H2O, and 2 g yeast extract/L distilled water. The MS 
medium pH was adjusted to 7.0 using KOH. After sterilization, 30 g 
of CaCO3 was added and growth was monitored by measuring the 
optical density at 600 nm. Chloramphenicol (30 mg/l) or kanamycin 
(50 mg/l) was added to media to select for the corresponding markers 
in the bacterial chromosome or plasmid.l-glutamic acid and glucose 
concentrations were measured using the biotech analyzer BF-5 (Oji 
Scientific Instruments, Japan).

Enzyme assay

Citrate synthase activity was measured according to the method 
of Weitzman [19]. Cells in mid-log phase grown in T-broth were 
harvested and disrupted with a Multi-beads shocker® (cell disruptor) 
(Yasui Kikai, Japan) operating at 2,500 rpm, following three cycles 

of 60 s on and 60 s off. After centrifugationat 15,000×g for 10 min 
to remove beads, 20 µl supernatant was used as a crude extract in an 
assay at 37°C. The assay solution also contained 0.1 M Tris-HCl (pH 
8.0), 8 mM Acetyl-CoA (Sigma), 10 mM5,5-dithiobis (2-nitrobenzoic 
acid) (Sigma) and 10 mM oxaloacetate (substrate; Sigma). Activity was 
monitored by measuring the absorbance at 412 nm on a 96-well plate. 
The protein concentration of the crude extract was measured using the 
Bradford method.

DNA-array data analysis

DNA-array data were obtained from GenoBase [14]. Gene Cluster 
3.0 and Microsoft Excel were used for the analyses [20]. To extract 
candidate genes with increased expression levels in both ΔarcA 
and ΔarcB strains, the data were compared with a wild-type strain 
and genes showing significant differences in expression levels were 
extracted. Numerical values for the expression rate of each spot were 
transformed into logarithmic values, and used to calculate the means 
and standard deviations. Based on the variance-analysis method, we 
calculated the unbiased variance for each gene, which was used in a 
t-test. The DNA array data had an insufficient sample size, which was 
overcome by multiplying the p-value obtained from the t-test by 4. 
Based on the corrected p-value, we evaluated the result of the t-test 
with the Bonferroni correction as follows:

Unbiased variance (Ve)=Sum of squared deviations (Se) / Degree 
of freedom (Ne).

Here, Se=sigma (measured value – average)^2, Ne=total spot 
number – number of experimental condition, Statistic=|D sample 
mean|/√{Ve× (1/spot number) ×2}, and level of significance=0.05/3.

In the case of wild-type comparison DNA-array data, we excluded 
genes that showed large differences with multiplex spots within the 
same DNA array. For other DNA-array data, we selected genes with 
expression levels that showed that the logarithmic value of the ratio of 
two spots was not equal to 0. Specifically, we calculated the average and 
standard deviation of the logarithmic value of each spot, and extracted 
those genes in ΔarcA or ΔarcB strains with expression levels greater 
than average plus two times the standard deviation value. We classified 
these genes with K-means clustering, and selected those that showed 
increased expression in both ΔarcA and ΔarcB strains.

Bioinformatics

C shell and MATLAB (matrix laboratory) were used to make 
scripts, MEME was used for DNA-motif construction [21], and 
WebLogo or MATLAB was used for visualization of the DNA motif 
[22]. Regulatory factor-binding sequences in E. coli were obtained from 
RegulonDB, DPinteract, Escherichia coli Transcription Factor Binding 
Sites (ECTFBS), and EcoCyc [23-26].

Local multiple alignment

An outline of the process is shown in Figure 1. Briefly, 20-mer, 25-
mer, and 30-mer lengths of unique sequences were extracted from the 
input upstream regions using EMBOSS: word count, and identical or 
similar sequences were identified using EMBOSS: fuzznuc. Similarity 
criteria were as follows: more than 56% identity against the 30-mer input 
sequence; more than 60% identity against the 25-mer input sequence; 
and more than 65% identity against the 20-mer input sequence. Similar 
sequences were aligned using MEME and treated as a DNA motif and 
an N-line M-raw character matrix. The conservation quality of each 
row was evaluated using IC which was calculated using the Shannon 

Strain Description Source or reference

MG1655 Wild type E. coli K12 Laboratory stock

∆sucA MG1655∆sucA::cm [15]

∆sucA∆ydcI MG1655∆sucA∆ydcI::cm This study

∆sucA / pMW218 MG1655∆sucA::cm / pMW218 This study

∆sucA / pMW-ydcI MG1655∆sucA::cm / pMW218-ydcI This study

Plasmid

pMW218 vector control for plasmid pMW-ydcI Nippon gene Co., Ltd.

pMW-ydcI pMW218 with ydcI This study

Table 1: Strains and plasmids.
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entropy [27]. The IC was calculated by the following equation:

2IC  log
T

b
b

b A b

f
f

p=

= ∑  

Here, fb is the appearance frequency of A, G, C and T in a residue 
position of the DNA motif, and Pb is the A, G, C, and T frequencies in 
the E. coli genome, which were each set to 25%.Summation of the IC 
in each row was treated as the information amount of the DNA motif. 
The conservation quality of each line was evaluated using the identity 
obtained from pair wise alignment using the Smith-Waterman method 
[28]. The probability of DNA-motif occurrence was calculated by the 
binomial distribution as follows:

( )0.25 1 0.25
C

n mm
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=
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Here, p is the probability, n is the number of DNA sequences 
constituting the DNA motif, and m is the number of A, T, G, or C bases 
in the DNA motif. The DNA-motif occurrence score was obtained by 
the logarithm of probability which was multiplied by –1 as follows:

logScore p= −

To test whether the DNA motif was constructed from homologous 
sequences, we performed a statistical value comparison between 
the DNA motif and a pseudo motif of the same size with a sequence 
collected randomly from the E. coli genome. This showed significant 
differences of conservation quality of both lines and rows. Toassess 
sequence similarity, the Wilcoxon signed-rank test was used with 
a significance level of 0.05. This procedure was repeated 200 times 
to prevent comparison with a highly conserved pseudo-DNA motif 
with sequences collected by chance. In more than 150 cases, the DNA 
motif was shown to be significantly conserved. For conservation 
quality of rows, on average, an IC>1.0 was used for further analysis 
of significantly conserved DNA motifs. In a separate statistical test, 
200 DNA sequences ranging from 10-mers to 40-mers were picked 
at random, and their identities calculated. The averaged identity was 
treated as the true value in the E. coli genome. Statistical evaluation 
regarding the identity between the DNA motif and the true value 
in the E. coli genome was tested using the one variable t-test with a 
significance level of 10–8. 

Clustering analysis of DNA motifs

Similarity scores between DNA motifs were calculated using the 
IC of the DNA motif and semi-global alignment with no penalty for 
end gaps (Figure 2). Scores were calculated by the recurrence formula:

Figure 1: Schematic of locally conserved sequence identification. Input 
sequences were broken down into 20-mer, 25-mer, or 30-mer length elements 
using the wordcount program. Sequences of high similarity to each element were 
identified using fuzznuc and aligned using MEME.

( I )

Figure 2: DNA-motif comparison.(A) Extracted 20-95-3 DNA motif. (B) 
Frequencies of A, G, T and C in each residue of DNA motif (20-95-3). (C) IC 
matrix of DNA motif (20-95-3) obtained by Shannon entropy. (D) Graphical 
representation of DNA motif (20-95-3). (E) Known ArcA-binding motif (ArcA-X; 
29). (F) Frequencies of A, G, T and C in each residue of ArcA-binding motif. 
(G) IC matrix of ArcA-binding motif obtained by Shannon entropy. (H) Graphical 
representation of ArcA-binding motif. (I) Scoring matrix for obtaining maximum 
homology between DNA motifs using semi-global alignment with no penalty for 
end gaps.
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Here, IC (i)b
motif1 is the IC of A, G, C or T bases on the i residue of 

the first DNA motif, IC (j)b
motif2 is the IC of A, G, C or T bases on the 

j residue of the second DNA motif, and d is the gap penalty which is 
set to 2.The distance matrix of the DNA motifs was calculated as the 
inverse of the similarity matrix. Clustering using the distance matrix 
was performed with SOM Toolbox for MATLAB (http://www.cis.hut.
fi/projects/somtoolbox/).

Identifying genome sequences similar to the DNA motif

A hidden Markov model (HMM) of the DNA motif was 
constructed using the hmmprofstruct and hmmprofestimate functions 
in MATLAB; the hmmprofalign function was used to find genome 
sequences similar to the DNA motif. To confirm that the detected 
sequence was significantly similar to the input DNA motif, we compared 
the similarity between the detected and random sequences. To obtain 
the random-sequence similarity score, the E. coli genome was split into 
100-bp fragments, and the most similar sequences were selected from 
each spliced region. These were treated as random sequences, and their 
averages and standard deviations were calculated using the alignment 
score of the hmmprofalign function. We used the z-test to determine 
whether the score of the homologous sequence was higher than that of 
the random sequence.

Results
Analysis of DNA-array data

 We analyzed the DNA-array data of the ΔarcA or ΔarcB strains 
in GenoBase [14]. This identified 101 genes with expression levels that 
differed significantly between a wild-type and ΔarcA strain or between 
a wild-type and ΔarcB strain. We classified these gene-expression 
profiles into seven clusters using the K-means clustering method 
(Figure 3). Twenty-one genes from one of the seven clusters showed 
increased expression in both ΔarcA-and arcB-deletion mutants 

(Figure 3A), suggesting that their expression was directly or indirectly 
controlled by the ArcAB system. Of these 21 genes, 17 (acnB, acs, bglJ, 
fepA, glcB,gltA, hdeA, icd, lpdA, mqo (formalyyojH), osmB, purE, sdhC, 
ydcI,yejG, yhhX, and ycgF) were the first genes of an operon or had an 
independent transcription unit, and ArcA-binding sites were expected 
to be located in their upstream regions. ArcA-binding sites have 
previously been shown to exist upstream of acnB, glcB, gltA, icd, lpdA, 
sdhC, and sucC [23], but the other genes are not known members of 
the ArcA regulon. We hypothesized that these were either unidentified 
members of the ArcA regulon or were not directly regulated by the 
ArcAB system. To identify ArcA-binding sites of the 17 genes that 
lacked regulatory sequence annotations, we analyzed 500-bp upstream 
and 100-bp downstream of the start codon (Figure 1). We analyzed 
glcD instead of glcB, as the former was the first gene of the glc operon. 

DNA-motif discovery

 We attempted to extract all conserved DNA motifs and compare 
them with known ArcA-binding motifs. We assumed that more than 
one-half of the input upstream regions of the 17 genes would possess an 
ArcA-binding site, and conditioned more than nine similar sequences 
to be extracted as such. The fuzznuc program showed that 68 of 10,398 
elements for 20-mer sequences and 101 of the 10,218 elements for 30-
mer sequences possessed more than nine similar sequences. The 68 and 
101 sets were aligned using MEME, and 20 of the 507 DNA motifs were 
extracted as statistically significant and classified using SOM clustering 
(Figure 4). As a positive control, we included the ArcA-binding 
motif proposed by McGuire et al. [29] (ArcA-X in Figure 4), and the 
modified ArcA-binding motif that removed non-E. coli sequences from 
McGuire’s ArcA-binding motif (ArcA-Y in Figure 4). As a negative 
control, we included the Mlc-binding motif, the sequences of which 
were obtained from the EcoCyc database [23]. 

No extracted DNA motif was classified into exactly the same 
cluster as the positive controls; however, DNA motif 20-95-3 was 
classified into a nearby cluster. We used semi-global alignment with no 
penalty for end gaps to compare the ArcA-binding motif with 20-95-3 
using the DNA motif IC (Figure 2). Six of the 20 DNA motifs (20-64-
3, 20-379-3, 20-520-1, 20-520-3, 20-305-1, and 20-8-1) were classified 
into a distant cluster to the ArcA-binding motif, and their sequences 
were completely different from those of the 14 remaining DNA motifs 

Figure 3: K-means clustering analysis of DNA-array data.Original data from GenoBase (14). Two spots of the same gene were compared on a slide: 1 and 2, wild-type 
spots; 3 and 4, wild-type and ΔarcA strains; 5 and 6, wild-type and ΔarcB strains. Red denotes messenger RNA (mRNA) increase in gene-deletion strain. Green denotes 
mRNA decrease in gene-deletion strain. (A) Genes with increased expression levels in both ΔarcA and ΔarcB strains. (B) Genes with decreased expression levels in 
both ΔarcA and ΔarcB strains. (C) Genes with increased expression levels in ΔarcB strain. (D) Genes with decreased expression levels in ΔarcB strain. (E) Genes with 
decreased expression levels in ΔarcA strain. (F) Genes with increased expression levels in ΔarcA strain. (G) Genes with increased expression levels in ΔarcB strain at 
only one spot. (H) Color bar indicating expression level.

http://www.cis.hut.fi/projects/somtoolbox/
http://www.cis.hut.fi/projects/somtoolbox/
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(Figure 4). The ArcA-binding motif and 20-95-3 had an alignment 
score of 18.53, revealing their similarity with each other (Figure 2).

Sequence composition of DNA motif and comparison with 
known ArcA-binding sequence

As shown in Table 2, the 20-mer 20-95-3 DNA motif was identified 
upstream of the following eight genes: acnB, fepA, gltA, lpdA, mqo, 
sdhC, ydcIand yejG. Of the 17 genes identified by DNA-array analysis, 
acnB, gltA, lpdA, sdhC, glcB (glcD), and icd are known ArcA-regulated 
genes (or operons). The known ArcA-binding sequences in the 
upstream region of acnB, gltA, lpdA, and sdhC partially corresponded 
to the sequence of the 20-95-3 DNA motif (Table 2), indicating that 
the motif contained several ArcA-binding sequences but that not all 
known binding sites could be detected. Therefore, we constructed an 
HMM of the 20-95-3 DNA motif to identify similar sequences. As the 
IC of the 20-95-3 DNA motif ninth and tenth residues was almost 0, 
we constructed two types of HMM with profile lengths of 20 and 18, 
and examined three p-values (0.01, 0.001, and 0.0001). Table 3 shows 
that similar sequences to the 20-95-3 DNA motif were identified in 
the upstream regions of acs, osmB, glcB (glcD), and ycgF, and that we 
found no putative ArcA-binding sequence in the upstream region of 
icd, yhhX, hdeA, purE, or bglJ, although the detection failure in the 
case of icd might have been due to analytical error, as an ArcA-binding 
site in the upstream region of icd has previously been experimentally 
validated [30].

DNA-motif identification excluding the ArcA-binding motif

We explored the possibility of the existence of a different gene 
network from the ArcA regulon. We noted that the expression level 
of ydcI was significantly increased in both ΔarcA and ΔarcB strains, 
and that two ArcA-binding sequences were predicted upstream of ydcI 
(Table 2). YdcI was annotated as anLysR-type DNA-binding protein 
with unknown biological function. We hypothesized that YdcI also 
controlled the expression of several genes. We searched for different 
DNA motifs from 20-95-3 using the method used for the discovery of 
the ArcA-binding motif. As more than nine sequences had already been 
analyzed, we selected DNA motifs containing four to eight sequences. 
Eleven of the 507 DNA motifs were extracted as being statistically 
significant, and were classified using SOM clustering (Figure 5). As 
before, ArcA-X and ArcA-Y (Figure 5) and the Mlc-binding motif 

were included as negative controls for SOM clustering [23,29]. Ten 
of the 11 DNA motifs were not classified into the same cluster as the 
ArcA-binding motifs or the Mlc-binding motif, suggesting that they 
lacked similarity. Of the 10 motifs, we focused on 20-150-1, which was 
located upstream of hdeA, gltA, icd, lpdA, sdhC, and yhhX (Table 4). 
The upstream region of hdeA, icd, and yhhX did not possess the 20-95-
3 sequence or its homolog sequences. We found similar sequences to 
20-150-1 in the upstream regions of acnB, fepA, glcD (glcB), gltA, hdeA, 
icd¸ lpdA, purE, sdhC, and yhhX by constructing an HMM of 20-150-1 
and using three p-values (0.01, 0.001, and 0.0001) (Table 5). Based on 
this result, we proposed a gene-regulatory network induced by YdcI 
(Figure 6).

We treated the nucleotide sequences of the DNA motif 20-150-1 
as the predicted YdcI-binding sequence, and annotated the upstream 

Figure 4: DNA-motif classification by SOM clustering for ArcA-binding motif.
SOM clustering result was shown in hexagonal lattice. Similar DNA motifs are 
in the same hexagon. ArcA binding motif and Mlc binding motif were used as 
positive and negative control, respectively.

Sequence (5′-)                  

acnB GTTTACAAAAAAGCAACATA known ArcA-binding sequence

gltA TTCAACAAAGTTGTTACAAA known ArcA-binding sequence

gltA TGTAACAACTTTGTTGAATG known ArcA-binding sequence

lpdA GTTAACAATTTTGTAAAATA known ArcA-binding sequence

lpdA GTTAACAATTTTTAAACAAC known ArcA-binding sequence

lpdA TTTTACAAAATTGTTAACAA known ArcA-binding sequence

mqo GGTAACACTTAAGTAACAAC unknown sequencea

sdhC TGTAACAACTTTGTTGAATG known ArcA-binding sequence

sdhC TTCAACAAAGTTGTTACAAA known ArcA-binding sequence

fepA GATAATATTATTGATAACTA unknown sequencea

ydcI GTTAATAATATTTTGCAATC unknown sequencea

ydcI GATAACTTGATTGCAAAATA unknown sequencea

yejG GTTAAAATTGATGTAAACAA unknown sequencea

afepA, mqo, ydcI, andyejG genes are not known members of the ArcAregulon.
Table 2: DNA motif 20-95-3 sequences and their verifications.

Gene

HMM motif length
20 bp 18 bp

p-value p-value
0.0001 0.001 0.01 0.0001 0.001 0.01

acnB Y Y Y N N N
acs N N N N N Y
bglJ N N N N N N
fepA Y Y Y N N N
glcD N Y Y N N N
gltA Y Y Y Y Y Y
hdeA N N N N N N
icd N N N N N N
lpdA Y Y Y Y Y Y
mqo Y Y Y N N N
osmB N N N N Y Y
purE N N N N N N
sdhC Y Y Y Y Y Y
ycgF N N Y N N N
ydcI N N N N N N
yejG Y Y Y N N N
yhhX N N N N N N
Y, homologous sequence found; N, homologous sequence not found
Table 3: Identification of homologous sequences to DNA motif 20-95-3 using HMM.
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regions of 10 genes using EcoCyc [23] (Figure 7). We found that the 
predicted YdcI-binding site partially overlapped the P1 promoter in 
the upstream region of gltA (Figure 7A), was located adjacent to the P2 
promoter upstream of icd (Figure 7B), and was located just upstream 
of the ArcA-binding site upstream of sdhC (Figure 7C). These results 
suggested that YdcI is involved in the regulation of expression of gltA, 
icd, and the sdh operon.

Experimental validation of the gene-regulatory network 
prediction

The flavor enhancer l-glutamic acid is produced worldwide in 
large quantities, and is an important fermentation product. Previously, 
we constructed a simulation model of the E. coli l-glutamic acid-
producing strainMG1655 ΔsucA, and found that the expression of 
gltA and icd was highly sensitive to l-glutamic acid production [31]. 
We hypothesized that if YdcIactivates gltA or icd gene expression, 
then ydcI gene amplification should lead to an increase in l-glutamic 

acid production, and if YdcI represses gltA or icd gene expression, 
then l-glutamic acid production should decrease. To test this 
experimentally, we constructed aydcI gene-amplification strain using 
a low-copy-number plasmid (ΔsucA/pMW-ydcI) and the ydcI gene-
deleted strain (ΔsucAΔydcI) from E. coli MG1655 ΔsucA. l-glutamic 
acid production was evaluated by shaking-flask cultivation (Table 6). 

Cellular growth of all strains was similar, and residual sugar levels 
were close to 0. l-glutamic acid accumulation of the ydcI gene-amplified 
strain (ΔsucA/pMW-ydcI) was decreased compared with a vector-
control strain (ΔsucA/pMW218) at the 1% significance level according 
to a t-test with the Bonferroni correction. By contrast, l-glutamic 
acid accumulation of the ydcI gene-deleted strain (ΔsucAΔydcI) 
was increased compared with the control strain (ΔsucA) at the 5% 
significance level using the same statistical test. These results suggest 
that YdcI represses gltA and icdA gene expression.

Figure 5: DNA-motif classification by SOM clustering for YdcI-binding motif. 
SOM clustering result was shown in hexagonal lattice. Similar DNA motifs are 
in the same hexagon. ArcA binding motif and Mlc binding motif were used as 
positive and negative control, respectively.

Figure 6: Proposed gene-regulatory network.Solid arrow indicates that the 
composed sequence of the DNA motif was presented upstream of the genes. 
Dashed arrow indicates that similar sequences of DNA motifs were presented 
upstream of the genes. Bold arrow shows ydcI gene transcription to YdcI protein.

Figure 7: Predicted YdcI-binding sites upstream of gltA,icd, and sdhC.
Annotation of known regulatory sequences was derived from EcoCyc. (A) The 
predicted YdcI-binding site overlapped annotation of the regulatory region for 
gltA. The ArcA-binding site sequence is underlined in green (tcaacaaagttgtta), 
the predicted YdcI-binding site in red (aacattaccaggaaaag), and the promoter 
sequence in blue (taccaggaaaagcatataatgcgtaaaagt). (B) The predicted YdcI-
binding site overlapped annotation of the regulatory region for icd. The sequence 
of the predicted YdcI-binding site is underlined in red (ttttgcatggtattttc), and 
that of the promoter sequence in blue (agagattatgaattgccgcattatagcctaata). 
(C) The predicted YdcI-binding site overlapped annotation of the regulatory 
region forsdhC. The sequence of the ArcA-binding site is underlined in green 
(ttgttgaatgattg), and that of the predicted YdcI binding site in red (cttttcctggtaatgtt).

Gene Sequence

gltA cttttcctggtaatgtt

hdeA tttttcatcgtaatatc

icd ttttgcatggtattttc

lpdA ttttttctggtaatctc

sdhC cttttcctggtaatgtt

yhhX tttttttttgatctttc

Table 4: Nucleotide sequence of DNA motif 20-150-1.
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To confirm this regulation control, we measured enzyme activities 
of citrate synthase encoded by gltA in crude extracts of the four strains 
(Figure 8). The specific citrate synthase activity of the ydcI gene-
amplified strain (ΔsucA/pMW-ydcI) was decreased compared with 
the vector control strain (ΔsucA/pMW218). The Bonferroni t-test 
revealed a 1% significant difference between the ydcI gene-amplified 
strain and a vector-control strain. By contrast, the citrate synthase 
activity of the ydcI gene-deleted strain (ΔsucAΔydcI) was increased 
compared with the control strain (ΔsucA). There was a 5% statistically 
significant difference between ΔsucAΔydcI and ΔsucA, suggesting that 
the decrease in l-glutamic acid accumulation by ydcI amplification was 
caused by a decrease in citrate synthase expression via repression of 
gltA by YdcI. 

Discussion
Combining the identification of DNA motifs in the upstream 

regions of several genes with transcriptome data is a promising 
approach for biological network identification [8-10], and several 
algorithms and tools have been proposed to achieve this [11,32-34]. 
However, newly sequenced microbial genomes are usually annotated 

only for gene and RNA prediction. To overcome this, we hypothesized 
that there would be significant identity among nucleotide sequences of 
DNA motifs involved in the regulation of gene expression. Although the 
extraction of all possible DNA motifs with more than 50% identity was 
time consuming, it allowed us to predict a bilayer structure consisting 
of the ArcA regulon and YdcI regulon from DNA-array data. 

To test our scheme, we carried out ArcA-regulon analysis, 
particularly comparing known ArcA-binding motifs with predicted 
ArcA-binding sites. Recently, Tanaka et al. [35] evaluated the 
alignment and scoring of such a comparison. Here, we converted DNA 
motifs to a matrix with Shannon entropy [27], and used semi-global 
alignment with no penalty for end gaps to maximize the similarity 
score in pairwise alignment of DNA motifs [36]. This allowed us to 
assess similarity, and was useful for cluster analysis of DNA motifs. We 
concluded that our method was effective as we successfully extracted 
known ArcA-binding sites.

In E. coli, the expression of most genes that encode enzymes of the 
TCA cycle is regulated by ArcA. Thus, ArcA also regulates the carbon 
flux into the TCA cycle, which is why we recognize the ArcAB two-
component system as an important factor for substance production. 
Here, we proposed that the putative transcription factor YdcI regulates 
gltA, icd, and sdh operon gene expression, and plays an important role 
in controlling the TCA cycle carbon flux. In low-GC-content Gram-
positive bacteria, such as Bacillus subtilis, the global transcription factor 
CcpA and local transcription factor CcpC have been known to regulate 
genes encoding enzymes of the TCA cycle [37-39]. Lozada-Chávez et 
al. [40] analyzed the gene-regulatory network structure using a large-
scale data set, and proposed that the gene-network hierarchy consists 
of global and local regulators, as seen in the relationships between E. 
coli ArcA and YdcI and B. subtilis CcpA and CcpC. Genome-sequence 
data revealed that E. coli ArcA was well-conserved and E. coli YdcI 
was partially conserved among γ-proteobacteria [41], whereas the ydcI 
gene was suggested to be acquired after divergence by gene duplication 
[40]. The TCA cycle local regulatory system in E. coli is suggested to 
have evolved in a biologically appropriate manner.

Both E. coli YdcI and B. subtilis CcpC are classified as LysR family 
transcriptional regulators, but do not share significant similarity at 
the amino-acid-sequence level. In general, DNA binding of such 
transcriptional regulatory proteins is affected by binding of low-
molecular-weight compounds. Citrate was identified as an effector in 

Gene p-value

0.0001 0.001 0.01

acnB N N Y

acs N N N

bglJ N N N

fepA N N Y

glcD N N Y

gltA Y Y Y

hdeA Y Y Y

icd Y Y Y

lpdA Y Y Y

yojH N N N

osmB N N N

purE N N Y

sdhC Y Y Y

sucA N N Y

ycgF N N N

ydcI N N N

yejG N N N

yhhX N N Y

Y, homologous sequence found; N, homologous sequence not found  
Table 5: Identification of homologous region to DNA motif 20-150-1.

Strain OD600
l-glutamic acid 
accumulation 
(g/L)

Residual glucose 
(g/L)

∆sucA 9.8±0.5 14.9±1.0 0.5±0.9

∆sucA / pMW218 9.7±0.5 16.2±1.0 0.2±0.3

∆sucA / pMW-ydcI 10.0±0.5 13.8±0.5 0.4±0.5

∆sucA∆ydcI 10.3±0.4 16.1±0.7 0.1±0.1

Averages and standard deviations represent four replicates multiplied by three. 
Table 6: l-glutamic acid fermentation analysis.

Figure 8: Activity of citrate synthase. The t-test with Bonferroni correction was 
performed. (A) Citrate synthase activity in E. coli MG1655 ΔsucAΔydcI relative to 
specific activity in MG1655 ΔsucA. The p-value was 0.027. (B) Citrate synthase 
activity in E. coli MG1655 ΔsucA pMW218-ydcI relative to specific activity 
in MG1655 ΔsucA/pMW218. The p-value was 0.008. Averages and standard 
deviations of three replicates are shown.
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the case of CcpC in B. subtilis [39], and the identification of an effector 
for YdcI is a future goal.

The control of carbon flux into the TCA cycle is critical from the 
viewpoint of metabolic engineering in the field of substance production. 
Increases in carbon flux generate energy, and lead to an increase of 
biomass yield and vice versa. Theoretical carbon-flux analysis shows 
that a lower biomass yield will typically result in higher yield. For 
example, in l-lysine fermentation, a reduced carbon flux was expected 
to increase the l-lysine-production yield [42], and higher carbon 
flux into the TCA cycle is expected to lead to higher l-glutamic acid 
production [31]. In E. coli, arcA gene deletion increases the carbon flux 
into the TCA cycle [13], and we confirmed that this deletion (ΔarcA) 
indeed improves l-glutamic acid production in the E. coli MG1655 
ΔsucA strain (unpublished data). 

The current study suggested that YdcI repressed the expression of 
gltA, which encodes citrate synthase, and that ΔydcI led to increased 
l-glutamic acid production. Extrapolating from this, ydcI gene 
amplification is likely to be a useful way to reduce the carbon flux into 
the TCA cycle. The repression of gltA gene expression by ArcA plays a 
major role in controlling carbon flow into the TCA cycle in the ΔydcI 
strain. Indeed, l-glutamic acid production did not differ between the 
arcA and ydcI double mutant and the ΔarcA mutant (data not shown). 
However, because ArcA is a global regulator of more than 100 genes, 
global alteration in gene expression would not necessarily improve 
substance production in industrial strains because of the metabolism 
balance. Thus, differential modification of arcAand ydcI genes should 
be performed depending on the nature of the producing strains. Future 
studies will investigate YdcI-binding sites and YdcI effectors in order 
to characterize YdcI accurately. This will further our understanding of 
the control of carbon flux into the TCA cycle for improved application 
in the industrial fermentation process.
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