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Abstract

A novel polyaniline based composite ion-exchange membrane of Sn(lV) silicophosphate (TSP) was synthesized
by inorganic TSP nanoparticles and the organic polymer matrix by sol-gel method. Physical and electrochemical
properties of the composite membrane were investigated in order to evaluate their key parameters as
electromembrane candidates in their application in electrodialysis water purification. The results revealed that
incorporation of TSP enhanced the properties of the ion-exchange membranes with influence of their thermal and
mechanical properties. Membranes were found to have the optimal properties, with good water uptake, ion-
exchange capacity (IEC = 1.40 meqg™), transport properties and excellent permselectivity. Membrane potential
measurements have been carried out in different electrolytes such as KCI (aq), NaCl (aq) and LiCl (aq) at different
concentrations to figure out the correlation between effective fixed charge density and transport properties of the
membrane. The study reveals that the inorganic-organic nanocomposite membrane shows higher cation-selectivity
towards K* ion. The effective fixed charge densities were found to follow the order K* > Na*> Li*. This newly-
developed membrane can be considered as excellent candidates suitable for water desalination by Electrodialysis.

Keywords: Synthesis; Characterization; Nanocomposite; Thermal and
chemical stability; Transport properties

Introduction

The ion-exchange composite membranes find applications in
various processes such as electro-dialysis, desalination, diffusion,
electro-deionization, membrane electrolysis, electrochemical synthesis,
fuel cells, and storage batteries also. Therefore, they are useful in
pollution control, energy saving, power generation, resource recovery,
etc. [1]. Polyaniline (PANI) is a technologically important material due
to its unique electrical, electrochemical, and optical properties which
enable its use in energy storage systems [2-5], electrochromic devices
[6], electronics [7], electrochemical actuators [8], sensors [9,10] and
separation science [11,12]. In the latter case, PANI was used as free-
standing membranes, supported films, and surface layers for
applications ranging from gas separation and pervaporation to
electrodialysis [13]. PANI separation properties can be tailored by the
nature of the dopant as well as by the doping level of the polymer [13]
PANI, separation is possible based on the size of the molecules,
molecules larger than 4.5 A being prevented from permeating. The
major breakthrough in the preparation of thin film composite (TFC)
membrane via interfacial polymerization technique has resulted in
tremendous achievements in producing a membrane with a right
combination of flux and salt rejection, and generating huge interest in
industrial sectors. Over the past decade, there have been intensive and
continuous efforts in the development of TFC membrane, both from
the industry and academia with the interests to further improve the
membrane productivity and selectivity as well as its tolerance against
metal ions, solvent, fouling etc. The transport properties when the
composite is used as a membrane have also been explored by
measuring its electric potential when it is in contact with different
electrolyte solutions of KCI, NaCl and LiCl. The effective fixed charge
density has been calculated by means of different approaches as

proposed by various research groups [14-18]. The experimental values
of potential have also been used to calculate the mobility ratio,
transport numbers of counter-ions and permselectivity of the
polystyrene blended hybrid membrane. On basis of a brief
introduction of the development history of composite membranes, this
paper reviews the recent research progress of the composite membrane
science and technology, particularly in the fields of water-related
separation processes. Reviewing the research progress is imperative
and necessary in order to provide an insight for the future
development and perhaps open a door to extend the applications to
other more challenging areas.

Experimental

Preparation of hybrid membranes

The composite mixture was powdered and sieved through 200 mesh
(Granule size < 0.07 mm). To improve the stability of the membrane,
polystyrene have been used as a binder as its cross-linked rigid
framework provides adequate adhesion to the molecules of composite
which accounts for the higher mechanical stability to the membrane
over other binders like poly(vinyl chloride), cellulose acetate, etc. Pure
crystalline polystyrene was also ground to fine powder and sieved
through 200 mesh. The powdered composite were then mixed with
granulated polystyrene with the help of a pestle and mortar to crush
and get ion-exchange membranes [19] having a varying percentage (by
mass) of polystyrene (15-35%). The membranes having 25%
polystyrene were only selected for electrochemical studies because it
showed excellent results.

Apparatus

As reported in previous paper [18] additionally digital potential was
used to measure the membrane potential.
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Measurement of potential

The freshly prepared inorganic-organic nanocomposite membrane
was cemented in a Pyrex glass tube cell having two compartments in
which a saturated calomel electrode was placed for measuring the
membrane potential; the schematic diagram of the constructed
electrochemical cell of the above type is shown in Figure 1. The
monovalent electrolytes of concentrations ¢l and c2 in both the
compartments of the cell, where the ratio y( = cz/ Cl) is fixed at 10,
were vigorously stirred by a magnetic stirrer to minimize the effects of
boundary layers on the membrane potential (mV + 0.5). The
experiment was conducted at room temperature and atmospheric
pressure.

Potential * | [‘Electrode Patential

sion Potential |

Figure 1: Schematic diagram for the measurement of membrane
potential.

Results and Discussion

Physicochemical properties

As reported in previous paper that the ion uptake capacity of the
synthesized material increased with increasing the mixing volume
ratio of ionogenic groups Sn(IV)silicophosphate ionogenic groups are
the groups to which counter ions are attached [18]. To establish the
relationship between the ion exchange capacity and size of metal ions,
some alkali and alkaline earth metal ions were selected.

Metal ions | onic radii | Hydrated ionic IEC/g of exchanger
(A°) radii(A°) exchanger(meq g'")

Li* 0.68 3.4 0.75

Na* 0.97 2.76 1.32

K* 1.33 2.32 1.44

Mg?* 0.78 7 0.82

Ca?* 1.43 5.9 0.92

Sr2 1.27 6.3 1.98

Ba?* 1.43 5.9 2.33

Table 1: Ion-exchange capacity of various exchanging ions on
Polyaniline Sn (IV) silicophosphate cation-exchanger

The results are shown in Table 1 in terms of ion exchange capacity
indicate that the ion uptake of monovalent and divalent ions is
sequentially increased with shrinking the hydrated ionic radii,
ensuring enhanced adsorption [20,21].
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Figure 2a: Effect of eluent concentration on Polyaniline
Sn(IV)silicophosphate

To determine the most favourable concentration and minimum
volume of eluent (NaNO3) needed for the complete elution of counter
ion (H* ions) from the composite material. The effect of effluent
concentration and elution behavior are shown in Figure 2a. It was
found that the only 120 mL solution of NaNO; (1.0 M) was required
for the complete removal of H* ions from the column containing 1.0 g
exchanger depicting good efficiency of the column. The pH titration
curves of composite material and their mixture indicates one inflection
point which signifies its monofunctional behavior (Figures 2b and 2c).
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Figure 2b: pH-titration curves of Polyaniline Sn(IV)silicophosphate
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Figure 2c: pH-titration curves of Polyaniline Sn(IV)silicophosphate

The strong cation exchange ability of the exchanger is apparent (pH
values below 3.0) in the absence of OH™ ions. The pH of the solutions
of metal chlorides is increased sharply with the addition of the base
and above pH 10, the exchanger begins to hydrolyze. It is also inferred
from pH titrations curves (Figure 2b) with decreasing hydrated ionic
radii, the ion uptake capacity simultaneously increases (uptake of K*
ion is greater than that of Li* ion and which is again repeated in Figure
2¢, Ca?* ion uptake is greater than that of Ba?* ion) which confirm the
results of the ion exchange capacity of alkali metal ions (Table 1).

FTIR and TGA studies

As reported in the paper “Synthesis, Characterization, and
Biological Applications of Nano composites for the Removal of Heavy
Metals and Dyes” by Khan et al. [18].

Morphological characterizations

X-ray and SEM image confirm the semi-crystalline morphology.
TEM analysis shows aggregation of nanoparticles (in the range of
30-50 nm) of polyaniline Sn(IV)silicophosphate cation exchange
material [18].

In order to examine the sorption studies of polyaniline
Sn(IV)silicophosphate columns, were performed in DMW and DMSO
systems. The distribution coefficients values (Kg values) indicate that
the material was found to be selective for heavy metal pollutants
Pb(II), Hg(II) and Co(II). Some quantitative binary separations of
metal jons were achieved on columns packed with this composite
material. The separations are quite sharp and recovery was quantitative
and reproducible [18].

For the electrochemical and transport properties of the composite
membrane, membrane potential values have been measured. When
electrolyte solutions (KCl, NaCl and LiCl) of different concentrations
ranging between 1 and 0.007 mol/dm3 are separated by a membrane,
an electrical potential difference develops across the membrane due to
the diffusion of oppositely charged ions through it with different
mobilities. This charge imparts some important electrochemical
properties to the membrane, the most important being the differences
in the permeabilities of co-ions, counter ions and neutral molecules.
The quantity of charge required to generate the potential is small,

especially when dilute solutions are used. The magnitude of the
membrane potential is dependent on many factors such as applied
pressure at the membrane preparation stage, concentration of
electrolyte solutions used, the counter-ion to co-ion mobility ratio, the
exchange characteristics of the membrane material for various cations.
It was observed that the hybrid membrane prepared at higher applied
pressure exhibited higher membrane potential for a fixed c2/cl. The
membrane potential, i, data obtained with the composite membrane

using different electrolytes are plotted as against -electrolyte
concentration, C, where C = (cl+c2)/2 (Figure 3). The values of
membrane potentials observed across membrane in contact with
various monovalent electrolytes show the potential order to be K+ >
Na+> Li+.
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Figure 3: Plots of membrane potential verses concentration of
different monovalent electrolytes.

It was observed, during the experiment, that the membrane
potential increased with time up to a maximum value and then
decreased gradually. Such variation was also reported by other workers
[22]. The time taken for the attainment of maximum potential is found
to be concentration dependent, more time being required for
concentrated solution, and it differs with different electrolytes.
Membrane potential has been regarded as a measure of membrane
selectivity for a long time. The measurement of ion activity by means of
a membrane electrode is most successful in the concentration range
over which the membrane behaves as ideally permselective and obeys
the Nernst equation. An ideally permselective membrane is one in
which the permeability for co-ions is negligible as compared to that for
counter-ions.

The deviation from Nernstian behaviour is due to the co-ion
transference [23] and the dependence of the exchange of cations
between the solution and the membrane phase and on the electrolyte
concentration. The values in Figure 3 show that the potential values
increase with decrease in concentration of all the tested electrolyte
solutions and are of the order of positive mV indicating that the
membrane is negatively charged i.e. cation selective. The selectivity
increases with decrease in the concentration because of the structural
changes occurring in the electrical double layer at the membrane-
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solution interface. The increase in selectivity with dilution is also
supported by the increasing values of the counter-ion transport

numbers, ty, (Table 2).

Electrolyte c2 (mol/dm?3) t+ @
1 0.59 1.42
0.7 0.61 1.55
0.5 0.63 1.67
KCI
0.25 0.66 1.95
0.1 0.78 3.59
0.07 0.83 4.74
1 0.58 1.40
0.7 0.60 1.47
0.5 0.61 1.55
NaCl
0.25 0.65 1.87
0.1 0.74 2.90
0.07 0.79 3.84
1 0.57 1.35
0.7 0.58 1.38
0.5 0.60 1.47
LiCl
0.25 0.61 1.55
0.1 0.71 2.48
0.07 0.76 3.18

Table 2: The values of transport number t and mobility ratio @ of the nanocomposite membrane calculated from the measured membrane
potential values for different electrolytes at different concentrations with c¢2/c1 = 10 at an applied pressure 146 MPa at 25 + 1°C.

When an ionic gradient is maintained by using two solutions of
different concentrations of same electrolyte on both sides of the
membrane, the mobile species infiltrate the membrane at different
magnitudes inducing various transport phenomena into the system,
including the development of potential across it. The influence is
greater in case of counter-ions than in the co-ions. The ratio of the
molar mobilities of the cation and anion ‘u_ /u_’ is defined as the

mobility ratio (@) of the membrane. The values of the mobility ratio
calculated for the composite membrane are also incorporated in Table
2. The values of @ in the membrane phase were found to be increasing
with decrease in concentration for all the monovalent electrolytes used
(KCl, NaCl and LiCl). The high mobility is attributed to higher
transport number of comparatively free cations as compared to the
anion of electrolytes.When a negatively charged membrane is imposed
between two solutions of a monovalent electrolyte of unequal
concentrations ¢l and c2 (c2>cl), the observed membrane potential,
Y, is related to electrolyte concentration by the following equation

[14,15]:

—t, = %ﬁ)(“‘;—x)% (1)

Here, @X is the effective fixed charge density of the negatively
charged membrane. Equation (1) indicates that the plot of 1, against
1/c1 will be linear (Figure 4a) with a slope equal to %(},_Ll) (<p2_X)

from which the values of @X for different electrolytes have been
evaluated (Table 2).
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Figure 4: Plots of (A) potential values, ¢mand (B)t__a against ¢ of
polystyrene based composite membrane for different monovalent
electrolytes.
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Another widely accepted approach to calculate the fixed charge
density was derived in literature [16] who suggested that when two
solutions of an electrolyte of different concentrations ¢l and c2
separated a membrane, the inverse of the apparent transport number
of the anion, t_ app in a high salt concentration range could be
expressed by the following equation:

1 _ 1 a(y —1)
T 1-a (-aylny

o,
. (=) 2
—app 1
Here, « is the ratio of molar mobility of cation to the sum of molar
mobilities of cation and anion, GX_C is the effective fixed charge density

of the membranes under investigation and cl (in mol/dm3) the
concentration of the monovalent electrolyte in the lower concentration

side of the cell. The apparent transport number of the anion t_ app is

defined by the Nernst equation:

)
n2
‘1

= (RT/F)(1 = 2¢_ )1 3)

—app
Equation (2) indicates that the values of & and GX_C can be evaluated
! oc) and slope (( aly —1) 60X )

1- 1—a)ylny "¢
against 1/c; (Figure 4b). The

by using the values of intercept (

from the linear plot of 1/t_ -

calculated values of the fixed charge densities BX_C of the polystyrene
blended calcium tungstate composite membrane are also given in Table
3. The fixed charge density of the hybrid membrane under different

electrolytic environments is found to be in the order KCl > NaCl >
LiCl.

Electrolyte KCI NaCl LiCl
X 0.0144 0.0126 0.0108
QX_C 0.0543 0.0388 0.0288

Table 3: Values of the effective fixed charge densities, calculated from
different approaches, of the nanocomposite membrane in contact with
different electrolytes.

The data in Table 3 show that the fixed charge density is highest for
KCl and lowest in case of LiCl for the same electrolytic concentration,
indicating that the composite membrane shows higher cation
selectivity towards K* ions. The same result has also been explained in
terms of counter-ion transport numbers.

Conclusions

The newly developed composite material shows selective behavior
towards K* ions and some of heavy metal ions. It can successfully be
used for the quantitative separation of metal ions from synthetic
mixture and real samples. The transport properties of the composite
membrane have been studied and found that the membrane potential
and the fixed charge density values are in the order KCI > NaCl > LiCl
and the membrane is found to show higher selectivity towards K* ions.
This newly-synthesized membrane can be considered as excellent
candidates suitable for water desalination by Electrodialysis.
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