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Abstract

Observations on the collagenolytic activity of endopeptidases in tadpoles undergoing metamorphosis were the
early steps in defining this family of matrix metalloproteinases (MMP). Extensive investigations into these enzymes
in plants and animals have revealed the highly pleiotropic nature of these molecules, both in physiologic and
pathologic conditions. The human MMP family is comprised of over 23 members, which are capable of degrading
and processing almost all components of the extracellular matrix (ECM) such as proteins and proteoglycans
including those of basement membrane. MMPs also can cleave a wide variety of non-matrix substrates such as
cytokines, chemokines, growth factors and their receptors as well as adhesion molecules important in tumor
microenvironment and at all stages of tumor progression.
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Extracellular matrix; Review

Introduction
Observations on the collagenolytic activity of endopeptidases in

tadpoles undergoing metamorphosis were the early steps in defining
this family of matrix metalloproteinases (MMP) [1]. Extensive
investigations into these enzymes in plants and animals have revealed
the highly pleiotropic nature of these molecules, both in physiologic
and pathologic conditions. The human MMP family is comprised of
over 23 members, which are capable of degrading and processing
almost all components of the extracellular matrix (ECM) such as
proteins and proteoglycans including those of basement membrane.
MMPs also can cleave a wide variety of non-matrix substrates such as
cytokines, chemokines, growth factors, and their receptors as well as
adhesion molecules important in tumor microenvironment and at all
stages of tumor progression [2-5].

MMPs are synthesized as zymogens and either secreted from the
cell into ECM or anchored to the plasma membrane, or some are even
found as intracellular proteins. Their expression is mainly regulated at
the transcriptional level, but recent reports suggest that post-
transcriptional events may play a role [6]. Most of MMPs contain four
distinct functional domains such as: signal peptide, propeptide,
catalytic domain, and hemopoexin-like domain [5]. They all share a
highly conserved zinc binding site in their catalytic domain.

The classification of MMPs summarized below in Table 1 is based
on their substrate specificity, domain organization and function [5,7].
MMPs that play an essential role in the tumor microenvironment can
be found in each of these groups [8-10].

MMPs: Cellular Sources and Role in Inflammation
One of the hallmarks of cancer is inflammation. Various pro-

inflammatory factors, including cytokines and MMPs are produced by

the tumor as well as by the tumor surrounding stroma. The
inflammatory cells of the stroma which contribute to the
microenviroment of tumor include: mononuclear cells such as
monocytes and macrophages; granulocytes such as neutrophils,
eosinophils, and basophils/mast cells and T and B lymphocytes.
Together, these cells can enhance turnover of ECM and tumor cell
migration. Stromal cells such as tumor-infiltrating leukocytes
including mononuclear cells (monocytes and macrophages),
granulocytes (neutrophils, eosinophils, basophils/mast cells) and
lymphocytes are known to be main producers of MMPs. A wide
variety of MMPs can be produced by these cells including
(MMP-1,2,3,7,9,10,12,13,14,19) capable of degrading ECM and
inducing tumor angiogenesis. MMP-9 which is directly involved in
angiogenesis is released mainly by macrophages at the tumor site. For
example it was recently shown that glioma-associated microglial/
macrophage MMP-9 expression promotes glioma infiltration into the
normal brain parenchyma [11]. It had previously been shown that
macrophages, mast cells and peripheral mononuclear cells amplify
neoplastic cell proliferation and angiogenesis which was mostly
attributed to the release of MMP-9 by these cells [12].

The release of MMPs from granulocytes in general, is based upon
demand. MMPs released by neutrophils are MMP-8 and MMP-9 with
latter shown to be highly potent proangiogenic enzyme. Tumor-
infiltrating neutrophils localize predominantly in the tumor interior,
in contrast to monocytes/macrophages which are found at the tumor
periphery or tumor/stroma border. Mast cells produce MMP-9 and
MMP-2, and like basophils, are able to release the vasoactive agents
from their granules.

Other important cells in the tumor stroma are fibroblasts,
endothelial cells and perivascular pericytes, which can also express
MMPs [13,14]. The cross-talk between tumor cells and normal stromal
cells can trigger fibroblasts to express MMPs, e.g., MMP-9. Other
known fibroblast-derived MMPs includes MMP-1, 7 and 14. In
addition, activated endothelial cells of the capillary network
overexpress several MMPs (MMP-1, 9, and 14) during sprouting and
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formation of lumina-containing tubules, although these cells are
relatively deficient in MMP expression when in a quiescent state.
Perivascular cells such as pericytes and smooth muscle cells have also
been implicated in tumor angiogenesis, and pericytes have been shown

to express MMP-9. Interestingly and as would be expected, it is
believed that upon maturation of newly formed blood vessels, the
interaction between pericytes and endothelial cells can lead to the
silencing of MMPs [14,15].

Family MMPs Key characteristics

Collagenases MMP-1, -8, and -13 These can cleave collagen and are able to process other
ECM molecules

Gelatinases MMP-2 and -9 Play an important role in the remodeling of collagenous
ECM, also targeting other ECM and non-ECM molecules

Stormelysins MMP-3, and -10 Process many ECM components as well as some growth
factors, cytokines and adhesion molecules, except for the
native collagen

Stormelysin-like MMPs MMP-11, and -12 MMP-11- induced in adipose tissue by cancer cells, and is
responsible for tumor progression through the degradation
of collage VI.

Matrilysins MMP-7, and -26 Play important roles in degradation and processing of
ECM and non-ECM proteins

Transmembrane MMPs

also known as MT1-, MT2-, MT3- and MT5-MMP
respectively

MMP-14, -15, 16, and -24 Located on the cell surface and control the local
environment of normal and tumor cells. Main activators of
proMMP-2 and are involved in blood vessel formation.
Also upregulated in tumors and in some cases associated
with poor prognosis of several types of cancer.

Glycosyl-phospatidyl-inositol (GPI)- type MMPs

also known as MT4- and MT-6-MMP

MMP-17, and -25

MM-19-like MMPs MMP-19 and -28 Produced by several carcinomas although their role is not
yet well defined. MMP28 is believed to play a role in
several diseases of the central nervous system (CNS)
including multiple sclerosis.

Other MMPs MMP-18, -20, and -23 MMP23 - produced by various normal tissues but their
precise roles have not yet been elucidated

Disintegrin/Metalloproteinase ADAMs (a disintegrin and metalloproteinase)
and the ADAMTS (a disintegrin and
metalloproteinase with thrombospondin motif)

An interaction between MMPs and ADAMTS was reported
with MT4-MMP contributing to activation of ADAMTS-4

Table 1: The classification of MMPs.

The expression of MMPs is regulated by various inflammatory
cytokines. For example, TNF-alpha secreted by macrophages in
response to pro-inflammatory signals has stimulatory effect on MMPs
produced by these cells. It was shown previously that a co-culture of
tumor cells with macrophages resulted in enhanced MMP expression
and invasiveness of tumor cells [16,17]. Recently, it was also reported
that pro-inflammatory cytokines such as Interleukin (IL)-8 and –IL-17
enhance the activity of MMP-2 and MMP-9 which in turn increases
cancer metastasis [18].

MMPs themselves can also regulate the inflammatory response
[19]. For example, MMP-9 can enhance the activation of pro-
inflammatory cytokines such as TNF, IL-1 beta, IL-6 and IL-8, but
MMP-2 may dampen the inflammatory process [20]. On the other
hand, some cytokines can have an inhibitory effect on the secretion of
MMPs. For example, interferon (IFN) alpha/beta inhibited tumor cells
secretion of active form of MMP-2 and chondroitin sulphate
proteoglycan (CS), an ECM component, as well as tumor cell
migration [21,22].

These interactions involving many cell types producing a range of
MMPs within the tumor and the bordering stroma, as well as
interaction of MMPs with their stimulators, inhibitors and substrates

become even more complex at the cellular level. Thus, depending on
the cellular source, the activity of a single MMP could have either
inhibitory or stimulatory effect on tumor growth.

Targets and Substrates of MMP Action: Cellular or
Extracellular

Our understanding of MMP action has been greatly enhanced by
the generation of mouse models. These have particularly facilitated the
identification of many other in vivo substrates for MMPs, including
many more non-ECM bioactive molecules. This includes growth
factors receptors, adhesion molecules, cytokines, chemokines,
angiogenic factors, apoptotic ligands, etc. [23,24].

ECM substrates
Proteolysis of the extracellular matrix leading to migration and

invasion of tumor and endothelial cells is an important action
mediated by; MMP-14, which has been recognized as one of the most
potent modifiers of the extracellular tumor microenvironment
[25-27]. In addition, MMP-14 participates in the angiogenic process in
growing tumors [15,25,28,29]. Remodeling of the basement membrane
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matrix and in particular the basement membrane of endothelial cells,
is a critical initial step in the angiogenesis process. The basement
membrane, rich in laminins and collagen IV, undergoes degradation
and re-assembly [30], with MMP-2, 9 and 14 playing a role in
remodeling of the basement membrane in vivo [31]. The expression of
MMP-2 by lung carcinoma metastatic to the brain has been correlated
with increased angiogenic profiles at the metastatic tumor-host
interface [32], likely modulated by these same mechanisms.

Non-ECM substrates
Various pro-angiogenic factors or inhibitors of angiogenesis are

released secondary to modification of ECM or cell surface by MMPs
[33]. An example of non-ECM substrates are cell surface adhesion
molecules, e.g., CD44. The transmembrane proteoglycan CD44, which
is found at the leading edge of the invasive tumor [34] was shown to
bind through its extracellular domain to several MMPs including
MMP-2. As a result of this interaction, the MMPs were localized at the
migrating front of the tumor, leading to proteolytic degradation and
promoting cell mobility [35]. In addition, it was also found that
binding of MMP-9 to CD44 promotes MMP activation [23].

Impact of MMP on Tumor Microenvironment and
Growth

Tissue remodeling, an important MMP function, is a result of
interactions with and modulation by a network of cytokines and
growth factors. Recall that both the ECM and basement membrane
serve as storage points for cytokines and growth factors bound to
proteoglycans. Enzymatic degradation of the ECM therefore results in
the release and diffusion of cytokines and growth factors as well as
activation of ECM molecules important in tissue pathology.
Additionally, MMPs act as sheddases or convertases, as they transform
membrane-bound cytokines, cytokine receptors, and adhesion
molecules, into their soluble forms [36,37]. The proteolytic action of
MMPs affects basic cellular events such as cell proliferation, migration,
adhesion, and also physiological processes related to ECM remodeling
such as angiogenesis. In the tumor microenvironment, the proteolytic
modification of many complex fibrillar proteins by MMPs facilitates
protease-dependent tumor cell migration and tumor angiogenesis.
Therefore, the upregulation of MMPs has been associated with many
pathological processes including inflammation and cancer.

MMPs in vitro show overlapping affinities for different ECM and
non-ECM substrates and many MMPs can degrade and process
several different classes of ECM proteins, e.g., MMP-2 and MMP-9
can degrade collagens I, IV, V, VII and X, gelatin, elastin, fibronectin,
and proteoglycans.

Tumor cell proliferation and inhibition of apoptosis
Tumor progression from its earliest phase i.e. the growth of tumor

cells at the primary site involves MMP activity. MMPs control cell
division and proliferation through regulation of growth factor
availability and activation or inactivation of growth factor receptors,
e.g. their proteolytic activity contributes to the release and processing
of factors such as fibroblast growth factor (FGF). MMPs can also
inhibit apoptosis, as in the case of MMP-7, which can trigger an
intracellular signaling pathway to promote cell survival [2,4].

Tumor migration, invasion, metastasis
MMP-2 and MMP-9, which are capable of degrading type IV

collagen and disrupting the integrity of the basement membrane have
long been recognized to play a role in tumor invasion. Studies of
MMP-9 and MMP-2–null mice provided further evidence of the role
of these MMPs in metastasis [2]. Recently, it was found that MMP-10
plays a significant role in cervical tumor growth and progression
through regulation of angiogenic and apoptotic pathways [38]. In
addition, MMP-1 was shown to play a major role in tumor growth and
angiogenesis. Its suppression in vivo reduced growth and angiogenesis
of lung tumors [39]. Similar findings were reported for MT2-MMP
associated with lung tumor progression and angiogenesis [40].

Valuable insight into these molecules was gained from direct
visualization of MMP activity in vitro and in vivo as well as
localization of their proteolytic activity during migration and invasion
of tumor cells [41,42]. In that respect, several studies evaluated
MMP-14 in tumor cells [26,43,44], and found protease activity of
MMP-14 to be localized at the polarized leading edge of the tumor cell
[26] facilitating forward movement of the cell. However, controversy
still exists as to extent of the role of MMPs in protease-dependent
versus protease-independent amoeboid movement of tumor cells
[27,43,44]. Using blocking antibodies against MMP-14 in a pancreatic
cancer cell line, it was recently demonstrated that MMP-14 is an
activator of several MMPs (MMP-2, MMP-9) and facilitates local ECM
degradation and invasion [45].

Angiogenesis and vasculogenesis
Angiogenesis, the formation of new blood vessels within the tumor,

is initiated when the tumor has reached a critical size. It involves
MMP’s degradation of ECM and non-ECM substrates and formation
of new blood vessels from the pre-existing vascular network. In
contrast, the de novo formation of blood vessels [14], which involves
the development of endothelial cell networks by recruitment of
circulating progenitors of the endothelial cells, is called vasculogenesis.
During tumor progression the ‘angiogenic switch’ occurs when the
balance between the proangiogenic and the antiangiogenic factors tilts
towards a pro-angiogenic outcome. Some MMPs play an important
role in the angiogenic process, MMP-9 is particularly known as a
critical mediator of the angiogenic switch [2,46]. In addition
Interleukin-32 (IL-32) has pro-angiogenic properties acting via
regulation of MMP-9 and IL-8 and several other molecules [47]. We
have previously shown correlation between increased angiogenesis and
MMP-2 expression at the brain-tumor interface in CNS metastasis of
lung carcinoma [32]. The gelatinases MMP-2 and MMP-9 are among
the major MMPs affecting tumor angiogenesis [48].

Pleiotropic activities of MMPs in tumor microenvironment
Based on the observations that MMPs play an essential role in

tumor cell proliferation, migration, invasion, metastasis and
angiogenesis, it seemed very plausible that inhibiting MMPs at the
tumor site would be a viable therapeutic target. The early transgenic
mouse models overexpressing various MMPs supported the notion
that MMPs contribute to tumor progression [49]. In addition, the
observation that high levels of MMPs correlated with poor prognosis
of cancer patients, paved the way for the clinical trials using inhibitors
of MMPs. The outcomes of these trials were disappointing showing
that indiscriminate targeting and broad spectrum inhibition of MMPs
did not result in the anticipated inhibitory effect on the tumor growth.
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On the contrary, in some studies inhibition of MMPs or MMP-
induced molecules resulted in promoting tumor growth [50,51]. These
unexpected findings led to the extensive studies using new mouse
models of MMP knock-outs in which the generation of gain or loss-of
function revealed the highly complex and pleiotropic nature of MMPs
and their function [52]. Currently available MMP knock-out mouse
models only encompass 17 out of 23 murine MMP genes. Additional
MMP knock-out mouse models are necessary in order to better
understand MMPs functions in human malignancies. In addition,
generation of double or even triple knock-out mouse models may be
necessary to minimize existing functional redundancy or
compensatory mechanisms between various members of MMP family
[6].

Suppressive and Stimulatory Effects of MMPs on
Tumor Growth and Microenvironment

There are number of MMPs that can stimulate or suppress tumor
growth, but some can exhibit both of these activities. In addition,
remodeling of cell surface, basement membrane and ECM by MMPs,
leads to the release of several membrane- or matrix-bound growth
factors and cytokines. This includes for example positive and negative
regulators of angiogenesis that impact tumor growth.

Stimulatory activities of MMPs
Several MMPs were shown to stimulate tumor growth, e.g., MMP-1.

However, indirect stimulatory activities of MMPs on tumor
progression are known as well. For example, one of the most studied
positive regulators of angiogenesis released from ECM by MMP
proteolysis is VEGF. In this regard, numerous studies have reported
the effect of MMP-9 derived from inflammatory leukocytes such as
macrophages and neutrophils [53] as well tumor cells [54] on VEGF
release. Also, MMP-2 and MMP-14 were shown to be involved in
mobilization and upregulation of VEGF [55,56]. In addition, MMP-3,
7 and 19 cleave matrix-bound isoforms of VEGF [57]. FGF-2, another
molecule with stimulatory activity on angiogenesis is released from the
ECM as result of proteolytic activity of MMPs [58,59]. Endothelial
basement membrane-bound FGF-2 resides in ECM as an inactive
form and needs to be proteolytically cleaved and released from ECM
in order to be biologically active [60,61]. MMP-9 was shown to induce
the release of FGF-2 [59]. In addition, new findings have shown that
thyroid-hormone may be regulating adhesion, migration and MMP-9
activity in myeloma cells via integrin. This may lead to the
development of new therapeutic targets for the treatment of myeloma
by allowing a disruption of the thyroid-hormone-integrin-MMP-9
signaling cascade [62].

Suppressive activities of MMPs
Although many MMPs stimulate tumor growth, there are some

MMPs that can suppress tumorigenesis. The generation of new
genetically modified animal models demonstrated that several MMPs,
such as MMP-8 and MMP-12 have inhibitory activities on tumor
growth. MMP-8 plays a protective role in cancer because of its
capability to regulate the inflammatory response. The expression of
MMP-8 derived from neutrophils was shown to be elevated in non-
metastatic cell line and correlated with its protective effect on tumor
cell invasion and metastasis [2,63,64]. MMP-12 overexpression in
colon cancer cells was shown to be associated with increased survival
[65]. In addition, it was reported that MMP-12 overexpression in

myeloid lineage cells affected modulation of myelopoiesis and resulted
in immune suppression. This study was done both in in vitro and in
vivo using immature cells from MMP12-overexpressing bitransgenic
mice showing immunosuppressive function of these immature cells on
T-cell proliferation and function [66]. Similarly, it was shown in mice
deficient for MMP inhibitor–TIMP-2, that there was an elevated MMP
activation associated with an increase in myeloid-derived suppressor
cells coexpressing VEGF [67]. Recently, tumor-suppressive functions
of MMP-9 were shown in colitis-associated cancer [68] and in
colorectal cancer [69].

In addition, inhibitors of angiogenesis are also released indirectly
during ECM remodeling by MMPs [33]. These inhibitors include
angiostatin, endostatin, and tumstatin [70]. The MMPs capable of
contributing to the production of angiostatin include MMP-2,7,9, and
12 with MMP-12 being the most efficient inducer of angiostatin
resulting in inhibition of angiogenesis [71,72]. Endostatin, another
inhibitor of angiogenesis was reported to be produced by cleavage
from collagen type XVIII of basement membrane by MMP-3, -7, -9,
-12 and -20. Also some select MMPs, e.g., MMP-9 were implicated in
production of tumstatin, another inhibitor of angiogenesis, from
collagen type IV [71].

MMPs and MMPs-induced molecules as targets for cancer
therapy

Clinical studies using inhibitors of MMPs failed to show desired,
expected anti-tumor effect [50,51]. The original premise for targeting
MMPs was an understanding that MMPs are primarily involved in
degradation of ECM proteins that play a key role in metastasis and
angiogenesis [73]. It is now known that several MMPs can play dual
roles as tumor stimulators or inhibitors depending on the type of
tissue and progression of the disease. There are several MMPs that
have this dual role, e.g MMP-3, 9 and 11 [2, 6,74,75]. In addition,
depending on the cellular source of the same MMP, e.g. MMP-12,
could be pro-tumorigenic when derived from tumor cells. However,
when derived from tumor-associated macrophages, MMP-12 has a
protective effect leading to differentiation of tumor cells followed by
better outcome of the disease [76].

A similar finding related to MMP-induced molecules such as VEGF
involved in tumor angiogenesis and known to be sequestered in the
ECM. Targeting and inhibition of the VEGF pathway in vivo in
pancreatic carcinoma and glioblastoma mouse models resulted in
worsening of the disease process by increasing tumor cell invasiveness
and metastasis [77]. Similarly it was shown that deletion of VEGF in
myeloid cells accelerated tumorigenesis [78]. Yet, another paradox was
reported relating to MMP-9, which is known to be associated with the
production of tumstatin, an inhibitor of angiogenesis. It is known that
MMP-9 activity is associated either with promoting or decreasing
angiogenesis.

The first anticancer broad-spectrum MMP inhibitors used in
clinical trials were tested alone or in combination with standard
chemotherapeutics in patients with advanced pancreatic, brain, lung
prostate and gastrointestinal cancers. However, after Phase III clinical
trials, failed to show efficacy, but often significant side effects, further
clinical studies were conducted [73]. There is also a large body of
literature covering various dietary antioxidants and cannabinoids on
MMPs’ role in cancer growth [79-81].

Some recently developed modalities of nanodelivery of therapeutics
which target tumors more efficiently, resulted in tumor cell growth
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arrest, apoptosis, and prolonged survival in vivo. This was associated
with reduction of VEGF secretion, reduction of blood vessel density
and decreased MMP levels. An example of this methodology was the
selective therapeutic targeting via nanodelivery of anaplastic
lymphoma kinase (ALK)-specific siRNA for the treatment of
neuroblastoma [82]. In another study investigators used nanoparticle
based delivery of tetrandrine to lung cancer cells [83]. They showed
that nanoparticle delivered tetrandrine inhibited migration and
invasion of lung cancer cells more efficiently than free tetrandrine by
down-regulating MMP-2 and MMP-9.

The implication of MMPs in cancer development and progression
continue to be of great significance. Current research efforts are
focusing on learning more about the mechanism of action of MMPs as
well as the discovery of new, selective therapeutic targets for MMP
activity. MMP inhibitors thus remain strong considerations for the
development of anticancer therapies.
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