
Research Article Open Access

Panchang et al., J Remote Sensing & GIS 2016, 5:4
DOI: 10.4180/2469-4134.1000180

Volume 5 • Issue 4 • 1000180

Journal of Remote Sensing & GIS Jo
ur

na
l o

f R
emote Sensing

& G
IS

ISSN: 2469-4134

J Remote Sensing & GIS
ISSN: 2469-4134 JRSG, an open access journal 

Keywords: Vibrio cholera; Cyanobacteria; Ecosystem; Mapping

Introduction
Cholera, transmitted by the bacteria Vibrio cholerae, is a severe 

disease that has been documented for centuries. Cholera may produce 
a range of symptoms involving asymptomatic infection to severe 
diarrhea and dehydration due to enterotoxins produced by the bacteria 
which interfere with absorption of key electrolytes. While there is no 
medicinal cure for the disease, rehydration therapy is a key treatment 
[1]. Because of the bacteria’s persistence in seafood and warm or 
brackish waters and due to its fecal-oral transmission [2], cholera 
serves as an indicator of key public health standards such as water and 
sanitation quality, access to primary health care, and socioeconomic 
disadvantage. In 2011 alone, 58 countries around the world reported 
a total of 589854 cases of cholera, an increase from the previous year 
thought to be associated with the outbreak introduced into Haiti in 
2010 following an earthquake [3]. Prior to this most recent epidemic, 
Latin America saw the first cholera outbreak in nearly a century when 
the disease was noted in a coastal area of Peru in 1991 [4] and proceeded 
to spread its way through almost every other country in Latin America 
and the Caribbean [4]. Ecuador was the second country to report a 
cholera outbreak, mere weeks after it appeared in Peru [1]. Between 
1991 and 1994 alone Ecuador was reported to have 86808 cases [2], 
and the second-highest morbidity rate of the affected region between 
1991 and 1996 [4]. Though case definitions did vary by country [4], 
rates are generally thought to be under-reported [2]. Analyses on the 
outbreak in Ecuador have pointed to a number of social mechanisms 
that may have influenced cholera transmission, including lack of 
wastewater treatment, illegal water connections, and types of water 
storage containers used. Some groups, such as males above fifteen years, 
appeared to be at higher risk because they were more likely to work 
outside of the home and be exposed, especially through consumption 
of street food [1]. 

Spatial analysis proves particularly useful in the analysis of disease 
spread by accounting for broad ranging factors such as geographic 
areas of risk, social networks, and weather patterns. From data on 
a 2008-2009 cholera outbreak in Harare, Zimbabwe, a 100 meter 
increase in elevation corresponded with a 30% reduction in the attack 
rate ratio [5]. A study in Matlab, Bangladesh also documented that the 
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Abstract
Cholera, caused by the bacteria Vibrio cholerae, hit Latin America after nearly a century in 1991. Ecuador was one 

of the most highly impacted regions by morbidity. While a number of infrastructural and socially relevant factors have 
been cited in cholera transmission, a growing body of work also points to the relevance of ecological factors, namely the 
presence and cycle of copepods and blue-green algae which may harbor the bacteria at certain times. The goal of this 
study was to demonstrate the utility of an interpolation technique which could be used alongside cholera case rate data 
to determine a predictive environmental signature for cholera risk areas in the future.

Mapping Minimum and Maximum Standard Deviation 3-Dimensionsional 
Slope Coefficients for Geo-spectrotemporally Iteratively Quantitatively 
Interpolating an End-member Proxy Signature of Cyanobacteria (Blue-
green Algae) for Eco-cartographically Delineating Cholera Risk in a 
Riverine Tributary Ecosystem in Ecuador
Sarita Panchang*, Samuel Alao, Jacob GB and Ricardo Izurieta
Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33613, USA

three strongest risk factors during two separate cholera epidemics from 
the 1980’s and 1990’s were proximity to surface water, high population 
density, and poor education level [6]. In Esmeraldas-one of the most 
severely affected provinces of Ecuador during the initial years of the 
outbreak [7], density and community connectedness were associated 
with increased incidence of diarrheal disease, but surprisingly factors 
such as proximity to roads were associated with more community 
dispersal and thus lower risk of cholera spread [8]. Another nationwide 
spatial analysis using smoothed incidence rates indicates that the 
cholera epidemic in Ecuador had two major peaks in early 1991 and late 
1992. Between 1991 and 1996, the province of Guayas contained about 
one third of all cases. Two thirds occurred in the coastal provinces more 
generally, with the provinces of Imbabura and El Oro having some of 
the highest average weekly incidence rates. One epicenter constituted 
the southern provinces – El Oro (the origin), Guayas, Canar, Loja, and 
Los Rios. The second epicenter was Esmeraldas and Imbabura. This 
is an interesting finding considering that some of these provinces, 
such as Imbabura, are located near the highlands and are located in a 
higher altitude, and exhibits the utility of using geographic features to 
pinpoint potential cholera outbreaks in diverse ecological conditions 
which may favor the bacteria’s growth [7]. 

It is known that seasonal patterns of cholera abundance can be 
attributed to environmental and climactic cycles that also influence 
copepods which frequent marine and estuarine systems and have 
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been found to host the bacteria [9]. In particular, certain types of 
cyanobacteria – also known as blue-green algae – may play a key role in 
maintaining endemicity of cholera [10-12]. A remote sensing technique 
was used by deMagny et al. which uncovered a relationship between 
higher chlorophyll a levels in coastal areas near Kolkata and Matlab, 
Bangladesh and algal blooms as well as copepod abundance, predicting 
recent cholera outbreaks. Since coastal regions of Ecuador were 
especially affected during the epidemic of the 1990’s throughout South 
America, predictive modeling of cholera risk through identification of 
key geospatial features would be an essential tool in early detection and 
intervention for future epidemics. This study demonstrates the utility 
of an interpolation technique to develop an endmember signature for 
blue-green algae based on known cholera case rates, a novel usage of 
remote sensing in water-borne disease.

Methodology
Ecuador is generally divided into three major ecological and 

climactic zones: the coast, the highlands, and the eastern Amazon 
[7]. However, even within these categories – sometimes in the same 
latitude – there is a wide range of weather and climate conditions, and 
topographical variation (Figure 1). Along the coast, rainfall can vary 
from 4000 mm per year in the north to 100 mm in the south (Third 
Millennium Alliance 2015). In 2015 the population of the country 
was estimated at 16,144,363, though density varies considerably as 
well (World Bank 2016). Mean elevation data obtained from GMTED 
indicates a minimum of -4 and a maximum of 6202.

For this study, imagery was obtained from Google Earth and 
Landsat 7 and 8, obtained for optimal cloud cover and dates covering 
key months of the year just prior to the rainy seasons when algal 
blooms are most likely to occur. The resulting Landsat TM images 
were obtained in November and May 2015. The southern province of 
Guayas was chosen to apply this interpolation technique (Figure 1) due 
to its coastal location and high abundance of mangrove and estuarine 
habitats. Prior literature (see above) as well as chloropleth maps (Figure 
3) of cumulative incidence of cholera from 1991 and 1992 (Ecuadorian 
Ministry of Health, Ricardo Izurieta, personal communication) also
indicate that Guayas was one of the most severely affected provinces
of the country.

Environmental parameters
Cholera incidence rates per thousand were cartographically 

overlaid onto the study site in ArcGIS region in order to determine 
actual rates at the eco-epidemiological riverine study site (Figure 2). 
Multiple georeferenced predictors were then examined extensively 
using georeferenced and altitude data. The criteria involved the 
centrographic measures of spatial mean and distance between a 
sampled, canopy, shaded, bloom of blue-green algae (i.e., capture 
point) and the distance from the site to the nearest human habitation 
village sample and to other habitats. The data bloom together with a 
battery of categorical attribute measures which were expanded into 
multiple spectrally-dependent, explanatorial, endmember, covariate, 
coefficient estimates. 

The bloom distances were then measured as Euclidean distances 
in the projection units of the raster which were computed within 
the digitized grid cell matrix. The Euclidean distance output raster 
contained the measured distances. The Euclidean Distance functions 
provided information according to Euclidean or, straight-line, distance 
between the georeferenced bloom and from bloom to human habitation 
(i.e., geometric distances in the multidimensional space). The Euclidean 

distances were computed as: distance () 21/2 x, y {( )}=−Σi x y. Every 
cell in the Euclidean allocation output raster was assigned the value of 
the source to which it was closest. The nearest source was determined 
by the Euclidean Distance function in ArcGIS. This function assigned 
space between the georeferenced, canopy, shaded, geo-classified land 
use land cover (LULC) bloom of blue-green algae. The Euclidean 

Figure 1: Guayas riverine study site base map.

Figure 2: Cumulative Cholera incidence rates.
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using Toutins rigorous model, Rationale Polynomial Coefficients 
(RPC) models, automatic DEM generation, orthorectification and 
automatic mosaicking [1]. Orthoengine also offers an industry-leading 
variety of control sources, including manual entry, geocoded imagery, 
geocoded vectors, chip database, digitizing tablet or a text file (www.
pcigeomatics. com).

We employed differentially corrected ground control points 
(DGCP’s) from a CSI max receiver which according to Jacob et al. 
has a positional accuracy of 0.178 m of the sampled blue-green algae 
to orient the images to our mapping coordinate system. Our RPC 
method used an empirical/statistical model which approximated a 3-D 
physical sensor model of Landsat TM visible and near infra-red (NIR). 
Since bias or error may have still have existed in the RPCs, the results 
were post-processed with a polynomial adjustment product using the 
DGCPS seasonal-sampled, canopy, shaded, blue-green algae LULC 
The original RPC parameters were refined with linear equations and 
the DGPS data. We used:

ΔP=A0+AS+Sample+AL.Line+ASL.Sample.Line+….

ΔR=B0+BS+Sample+BL.Line+BSL.Sample.Line+…. 

where A0, AS, AL, ASL… and B0 BS BL and BSL… were the image 
adjustment parameters. Since bias or error may have still existed after 
applying the RPCs, the results were post-processed. The original RPC 
parameters were refined with linear equations and the DGCPs. The ΔP 
and ΔR were the adjustable functions expressing the difference between 
the measured and the nominal line and the sample coordinates. For 
most images, zero-order polynominal adjustment (e.g., A0 and B0) 
are required (www.digitalglobe.com). The OrthoEngineTM software 
supported both zero and first order RPC polynomial adjustments.

The different modules in Spatial Analyst extension of ArcGIS 
10.2® was used along with spatial modeller tools from ERDAS Imagine 
9.3® to perform VI calculations. NDVI was calculated using radiance, 
surface reflectance (p), and apparent reflectance values in the red (0.63 
to 0.69 μm) and NIR (0.76 to 0.90 μm) spectral bands. The ratio of 
reflected radiance from the red and NIR bands were used to normalize 
illumination and topographic variation and to form the NDVI, which 
was then used as an indicator of the amount and vigour of vegetation 
in the riverine epidemiological study site. Initially, a sensitivity analysis 
was conducted prior to generating NDVI parameters by analyzing the 
atmospheric and soil-perturbed responses as a continuous function of 
plant Leaf Area Index (LAI). Leaf area index (LAI) is the total one‐
sided area of leaf tissue per unit ground surface area [1]. LAI is a key 
parameter in ecophysiology, especially for scaling up the gas exchange 
from leaf to canopy level, which normally characterizes the canopy–
atmosphere interface, where most of the energy fluxes exchange. LAI 
can be determined directly by taking a statistically significant sample 
of foliage from a plant canopy, measuring the leaf area per sample 
habitat plot and dividing it by the plot land surface area [2]. Analysis 
of the literature shows that most cross‐validations between direct and 
indirect methods have pointed to a significant underestimation of 
(LAI) especially in forest stands [7]. The two main causes for canopy, 
shaded, spectral discrepancy is clumping and contribution of stem and 
branches however, recent theoretical and technical solutions have been 
presented as potential improvements to reduce bias or discrepancies 
[7]. The accuracy, sampling strategy and spatial validity of the (LAI) 
measurements has to be constantly assessed for quality assurance of 
both the measurement and for modeling purposes for all calculated 
(LAI) -dependent ecophysiological and biophysical processes of 
seasonal, blue-green algae LULC canopies [1]. Canopy geometry is 

Figure 3: Normalized difference vegetaion index for the riverine study site.

Figure 4: Spectral endmember signature of a Landsat TM blue-green algae 
LULC signal.

direction output raster contained the azimuth direction from each grid 
cell centroid to the nearest source. The Euclidean Allocation function 
identified the nearest human habitation center closest to each grid cell. 
The distance between sampled blue-green algae bloom LULCs and 
human habitation areas were then categorized into specific Euclidean-
distance based classes (e.g., 1: 0-5 km, 2: 5-10 km, and so on). 

Ecohydrological and vegetation models 
The latest version of PCI Geomatics Orthoengine® software was 

then used to generate a digital elevation model (DEM) from the 
spatiotemporal-sampled, georeferenced, canopy, shaded, blue-green 
algae LULC. PCI software supports automatic overlay of vector 
arthropod-related habitat DGPS collections, geometric modeling 
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directly related to LAI. As such, the indicator plays an essential role in 
theoretical production ecology [8].

The LAI was used to generate photosynthetically, active riverine, 
blue-green algae LULC canopy, shade-related, explanatory, predictor, 
covariate, coefficient bloom estimates for quantitating vegetation 
related LULC parameters at the epidemiological study site. An 
inverse exponential relation between LAI and light interception was 
established using P=m Pax(1-ec-LAI), where Pmax designated the 
maximum primary production and c designated a vegetation specific 
growth coefficient. Physiological processes such as photosynthesis, 
transpiration and evapotranspiration are related to LAI [www.esri.
com]. Randomly selected grid cell and spectral measurements were 
assessed to determine plant LAI in ArcMap®.

Estimations of LAI production were conducted by correlation 
analysis with spectral reflectance ratio and measured blue-green 
algae LULC values. The best fitting waveband ratio among calculated 
reflectance and VI’s were selected. Percent relative error and vegetation 
equivalent ‘noise’ (VEN) were calculated for soil and atmospheric 
influences in the study site separately and combined using calculated 
LAI measurements. The NDVI had a relative error of 10 percent and 
VEN of ± 0.91 LAI. 

We then performed Raster modeling in ArcGIS 10.2® which 
included performing image differencing on the NDVI layers, 
classifying the layers into different c lasses and calculating a wetness 
index employing the Raster Calculator. The difference of the Landsat 
TM visible and NIR bands was divided by their sum, which formed 
the functionally equivalent NDVI over the terrestrial surfaces of the 
riverine epidemiological study site. NDVI spectral variability (i.e., 
standard deviation of sub-grid pixel estimates) was able to differentiate 
multiple LULCs. NDVI parameters, was computed directly without 
any bias or assumptions regarding plant physiognomy, land cover 
class, soil type, or climatic conditions, within a range from -1.0 to 1.0 
using visible and NIR reflectance, (p), utilizing and the expression:
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To assess the accuracy of the NDVI thematic maps, a simple 
random sampling method was chosen to ensure sampled selection. To 

provide a statistically efficient assessment of accuracy, a conservative 
sampled size equation was then employed to calculate the sample sizes 
using an error matrix. 

For each mapping region, stratified sampling formulas were 
applied to estimate spectral error proportions in the ArcGIS vegetation-
related LULC maps generated using the estimates of overall and class-
specific user's and producer's accuracy. The use of stratified formulas 
is important for validating field-sampling methods. Accuracy results 
were computed thereafter through weighting the cell proportions by 
the proportion of each Landsat TM classified LULC within a given region. 
Specifically, the overall producer’s accuracy was estimated employing 
the post -stratified formulas. We used post-stratified LULC estimators 
as the known Landsat TM pixel totals for each land-cover class (Ni+) 
were treated as a stratified random sample of ni+ pixels from the Ni+ 
pixels in that class. In this research user's accuracy (Ui) were based on 
the random sampling formulas: 
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The producer’s accuracy was calculated to determine the probability 

that a reference sampled Landsat TM -classified LULC correctly mapped 
and measured the errors of omission (1-producer’s accuracy). In 
contrast, the user’s accuracy indicated the probability that a sample 
from the blue-green algae LULC map actually matched the reference 
data and measured the error of commission (1-use’s accuracy). Kappa 
statistics were then calculated using SAS PROC FREQ. Kappa statistics 
(κ) are appropriate for testing whether agreement exceeds chance 
levels for binary and nominal ratings for remotely-sensed models 
constructed from spatiotemporal-sampled, spectrally-dependent, 
georeferenced, seasonal, blue-green algae bloom-related, explanatory 
predictor variables [2]. The equation for κ was: 

Pr(a) Pr(e)
1 Pr(e)

−
κ =

−
where Pr(a) was the relative observed agreement among the 

uncertainty based statistics and Pr(e) was the hypothetical probability 
of chance agreement between the DGCP-sampled, georeferenced, 
observational, blue-green algae LULC data. If the residual estimates 
were in complete agreement, then κ=1. If there was no agreement 
among the classified data other than what would be expected by 
chance, then κ ≤ 0. 

Object-Oriented classification
Once a robust dataset of the remotely-dependent, explanatory, 

predictor, covariate coefficients was constructed, ENVII® spectral tools 
were used to analyze the LULC data of the canopy, shaded blue-green 
algae, eco-georeferceable, capture point. We input the data into ENVI® 
technology using the GeoTIFF format. ENVI supports Input File 
LandsatTM functions including GeoTIFF, NITF and Tile Product (.til) 
(www.ittvis.com/portals/0/pdfs/envi/ Getting_Started_with_ENVI. 
pdf). In ENVI 4.6®, a spectrum plot, known as a z-profile, of the pixel 
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under the cursor was run through all bands of the Landsat TM image. 
The basic workflow involved importing the data collected in the field 
from the riverine eco-epidemiological study site into a spectral library. 
The library was then employed in the endmember collection workflow 
to perform a supervised classification, based on the sampled riverine 
blue-green algae LULC spatial data feature attributes. Binary Encoding, 
Spectral Angular Mapping (SAM) and Spectral Feature Fitting were 
used to rank and match any unknown spectrum to the materials in the 
library. 

The endmembers of the georeferenced canopy shade-related 
riverine blue-green algae LULC and its associated attributes were 
then extracted them from ENVI®’s spectral library. Several spectra 
corresponding to the different backgrounds in the canopy, shaded, 
structures, rippled water pixel components had to be included, since 
multiple scatterings between floating leaves in the habitat, and a bright 
soil background increased the LandsatTM NIR reflectance. Leaf cells 
have evolved to scatter (i.e., reflect and transmit) solar radiation in the 
NIR spectral region [www.esri.com]. After the calibration estimates 
had been determined the image was converted to match the library. 
Analogously, the LandsatTM reference endmembers spectra in the 
library were transformed into the endmembers spectra of the image.

We used a random selection of pixels to assess the satellite 
classification accuracy. LandsatTM class representative pixels were 
thereafter selected and compared to a reference training dataset. During 
the segmentation procedure, image objects were generated based on 
several adjustable criteria of homogeneity such as colour, shape, and 
texture. Data pre-processing involved converting the DN to radiance 
atmospheric correction using FLAASHTM, and co-registration 
techniques. Image classification was conducted thereafter using the 
object-oriented approach. FLAASHTM generated a model (.gmd file) 
that converted the image’s DN to at-sensor radiance and computed at-
sensor reflectance while normalizing the solar elevation angle. 

The equation was as follows:

2
BandN

BandN
BandN

(L GainBandN BiasBandN) D
E (COS((90 ) /180))

π × + ×
ρ =

× −θ ×π
Where,

ρBandN=Reflectance for Band N

LBandN=Digital Number for Band N

D=Normalized Earth-Sun Distance

EBandN=Solar Irradiance for Band N 

The reference data in this research was the “ground truthed” 
data of the selected canopy, shaded, riverine, blue-green algae LULC 
explanatory, predictor variables. Selected random pixels from the 
thematic map were then compared to the reference data. The estimated 
accuracy for the spectrally extracted data was calculated:

2 2

x nP z z 1
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where, x=number of correctly identified pixels, n=total number 
of pixels in the sample, θ=the map accuracy, (1-α)=a confidence 
limit. The LandsatTM classifier identified the canopy shaded blue-green 
algae LULC and their associated ripple water larger than 0.4 has with 
generally satisfactory results (92.1%) with a lower detection limit of 0.1 
ha. 

The successive projection algorithm (SPA)
We used an SPA to generate endmembers from the blue-green 

algae LULC and the ripple water spectra. We let P(i, j) denote the 
spectrum for the spectrally extracted LandsatTM pixel using the image 
coordinates (i, j), as the foundation of the unmixing algorithm which 
in this research was defined by using m

(i, j) (i, j)k k (i, j)k 1
p f e

=
= + ε∑    and also 

m
(i, j)k (i, j)kk 1

f 0, k 1,....,m, f 1
=

≥ = =∑  where m was the number of 

endmembers, ke
was the kth endmember, (i, j)ε was the approximation 

error term (i.e., residual), and f (i j) k, was the fractional abundance for 
the kth endmember of pixel (i, j).

We omitted the error term in m
(i, j) k (i, j)(i, j) k 1 k

p f e
=

= + ε∑
   and 

computed the possible linear mixtures from 
m
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and 
m

(i, j)k (i, j)kk 1
f 0, k 1,.....,m, f 1

=
≥ = =∑  which formed a simplex 

Cm defined by m vertices that corresponded to the blue-green algae 
LULC endmembers, 1 2 me , e ,...., e   . According to Jacob et al. the 
volume of the simplex Cm can be calculated from the equation 

1
T 2

m
1V(C ) | det(WW ) |

(m 1)!
=

−
where 2 1 3 1 n 1W [e e , e e ,...., e e ]= − − −      is the 

volume of the simplex defined by m endmembers, and where det(.) 
denotes the determinant of a matrix representing the operation of an 
absolute value. Once the endmembers 1 2 me , e ,....., e   were determined 
while their abundance was estimated through the least squares method 
which was equivalent to a projection on the simplex.

We then used the Li-Strahler geometric-optical model based 
on the assumption that the BRDF would retrieve blue-green algae 
LULC, riverine canopy structural variables. Initially we generated 
a bidirectional reflectance distribution function (BRDF). The 
bidirectional reflectance distribution function is a four-dimensional 
function that defines how light is reflected at an opaque surface 
(Jensen). This function took incoming light directions, ωi, and outgoing 
directions, ωo, both defined with respect to the georeferenced algae 
bloom surface normal n, and returned the ratio of reflected radiance 
exiting along ωo to the irradiance incident on the riverine ripple water 
spectral components from direction ωi. Note that each direction ω was 
itself parameterized by azimuth angle ϕ and zenith angle θ, therefore 
the BRDF as a whole was 4-dimensional. The BRDF we calculated had 
units sr−1, with steradians (sr) being a unit of solid angle Therefore the 
BRDF was defined by: where L was the radiance, E was the irradiance, 
and θi was the angle made between ωi and the blue-green algae 
LULC and its associated ripple water surface reflectance emissivities. 
The BRDF defined how light was reflected and the function took an 
incoming light direction, ωi, and outgoing direction, ωo, which were 
both defined with respect to the blue-green algae LULC and it’s with-
in canopy and ripple water surface n, spectral values and returned the 
ratio of reflected radiance exiting along ωo to the irradiance incident 
from direction ωi.

The inverted Li-Strahler geometric-optical model was then used 
to retrieve specific spectral uncoalesced blue-green algae LULC 
predictor covariate coefficients. The reflectance associated with a 
georeferenced capture point was treated as an area-weighted sum of 
four fixed reflectance components: sunlit canopy, sunlit background, 
shaded canopy, and shaded background. In geometric-optical models 
these four components can be simplified to three: sunlit canopy–C, 
sunlit background–G and shadow–T [www.esri.com]. The sub-
pixel endmember spectral components were derived using G, C, T 
components’ classes which were initially estimated by the Quick Bird 
image using ENVI®, an object-based classification method. For inverting 
the model, parts of the three spectral components were represented by 

http://en.wikipedia.org/wiki/Radiance
http://en.wikipedia.org/wiki/Irradiance
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(Kg) which was calculated using:
( ) ( ) ( )i v i vM sec sec O , ,

gK e  −π⋅ ⋅ θ + θ − θ θ φ = 		                                (2.1)

( )
i v

i v

h tan tan cos
cos t

r sec sec
θ − θ φ

=
θ + θ 	             (2.2)

( )
i v

i v

h tan tan cos
cos t

r sec sec
θ − θ φ

=
θ + θ

			              (2.3)

( )
( )( )

g

i v

ln K
M

sec sec t cos t sin t

−
=

θ + θ π− +
		             (2.4)

MCC 1 e−π⋅= − 			                               (2.5)

where, I q u q were the zenith angles of illumination and viewing, 
O was the average of the overlap function between illumination and 
viewing shadows of eco-georferenceable algae blooms and its associated 
and ripple water components as projected onto the background. In the 
geometrical, optical paradigm j was the difference in azimuth angle 
between illumination and viewing.

Interpolation analyses 
Spatially elucidative linear predictors were generated from the blue-

green algae LULC and its rippled water components using an Ordinary 
kriged-based interpolator. The dependent variable was the explanatory 
spectral emissivity estimates LandsatTM band ratio of the riverine, 
eco-epidemiological, eco-georeferenceable, capture point rendered 
from the decomposition of the LandsatTM pixel. We transformed the 
emissivities to fulfill the diagnostic normality test prior to performing 
kriging. Interpolation algorithms can generate accurate autoregressive 
endmember endemic transmission-oriented geopredictive risk maps 
[www.esri.com]. 

The unknown value Z(x0) was interpreted as a random variable 
located in (x0), as well as the values of neighbor’s samples (Z xi) i = 
1,..., N .. The estimator Z(x0) was also interpreted as a random variable 
located in the interpolator x0, as result of the linear combination of 
the blue-green algae LULC, spectral endmember predictor variables. In 
order to deduce the kriging system for the assumptions of the model, 
the following error committed while estimating Z(x) was estimated 
employing

N
T T

0 0 0 1 N 0 l 0 t 0
f 1

ˆe(x ) Z(x ) Z(x ) [W 1].[Z(x )....Z(x ) Z(x )] W (x ) Z(x ) Z(x )
=

− − − − − × −∑
The quality criteria was then expressed in terms 

of the mean and variance of the new random variable 
0(x )∈ . Since the random function was stationary, [i.e., 

l 0E(Z(x )) E(Z(x )) m− − ], the following constraint was observed: 

0 l 0 1 0E(e(x )) 0 W (x ) E(Z(x )) E(Z(x )) 0− ⇔ × − − ⇔∑  . 
N N

T
l 0 l 0

i 1 i 1
m w (x ) m 0 w (x ) 1 1 W 1

= =

⇔ − − ⇔ − ⇔ − −∑ ∑ The variance 
of the geopredictive endemic transmission-oriented model was then 
minimized employing 2 0 (() ) ∈Ex. Two estimators had 0 () 0 ∈= 
x, but the dispersion around their mean determines the difference 
between the quality of blue-green algae LULC estimators [1]. Our 
model rendered the following

T T T T
0 1 N 0 N 0

W
Var( (x )) Var([W 1].[Z(x )....Z(x ) Z(x )] ) [W 1].Var([Z(xi)....Z(x ) Z(x )] ).

1
 

∈ = − = −  − 
 

and l 0

l o 0

xl x xT
0 T

x x x

Var Cov W
Var( (x )) [W 1]. .

1Cov Var
+

   
∈ = −    −    

 where the literals 

1 l 0x x0 x x{Var , Var ,Cov }  represented 
T T

1 N 0 1 N 0{Var([Z(x )....Z(x )] ), Var(Z(x )),Cov([Z(x )....Z(x )] , Z(x ))}

. We defined γ(h) (i.e., variogram) in the endemic endmember 
transmission-oriented model in the analysis of Z(x). We then wrote 
an expression for the estimation variance of the canopy, shaded, blue-
green algae LULC estimator using the function of the covariance 
between the samples and the covariances to estimate: 

l l 0 l 0

T T
0 x x x x x x0

0 l j l j l j l l 0

Var( (x )) WT.Var .W Cov .W W .Cov Var

Var( (x )) Cov(0) w w Cov(x , x ) 2 C(x , x )

 ∈ − − − + 
 

∈ − + −  ∑ ∑ ∑
Which minimized 

l l 0 l 0 0

T T T
x x x x x xW .Var .W Cov .W W .Cov Var− − + .

l l 0

1 *
l l l n l

x x x

*T
n l n n n

(x , x ) (x , x ) 1 (x , x )
Var 1 CovW

.
(x , x ) (x , x ) 11 (x , x )1 0
1 1 0 1

−  γ γ γ 
         − −       µ γ γ γ              



   





Where 

the additional parameter μ was a Lagrange multiplier employed in the 
minimization of the kriging error 2 () σ kxto honor the unbiasedness 
condition. Finally, the estimation and error by Ordinary kriging was 
given by: 

T T T T
0 1 N 0 0 1 0 N 0

ˆ ˆ ˆZ(x ) W .[Z(x ).....Z(x )] : (Z(x ) Z(x )) W .[ (x , x ).... (x , x )1]− − − γ γ

.Additionally, we tested our model residual forecast with that of current 
unmixing algorithms commonly applied for canopy-oriented blue-
green algae LULC endmember signature generation. This unmixing 
algorithm was based was on the following linear mixing model:

mn m
2

k l l,k k k
l k

R a .E RMSE
−

 = + ε = ε 
 

∑ ∑

Rk: Reflectance of source at wavelength k

Ek,i: Reflectance of endmember i at wavelength k

al: Abundance of endmember i

εk: Error at wavelength k

RMSE: Root Mean square error of the εk

N: Number of endmembers

M: Number of wavelengths in the discrete spectrum

This model assumed that spectrum is a linear superposition of 
the blue-green algae LULC shaded canopy-related endmembers. 
The abundances were computed using two standards the algorithm 
assumed that wavelengths were given in nanometers (i.e., BEAM's 
default wavelength unit). The spectral unmixing tool was invoked 
from VISAT's tool menu by selecting the Unmix command and by 
using the command line tool gpt (Graph Processing Tool) found in 
BEAM's bin directory in batch mode (Figures 4 and 5). The differential 
form of the equation for the standard spectral unmixing, diagnostic, 
eco-georeferenceable, forecast, vulnerability, sub-pixel, model was: 

v v v,s v,a v v v,s v
1 1ˆI . I (k k ) I j k I d
C t 4 C Ω

∂
+Ω∇ + + = + Ω

∂ π ∫
where jv was the georeferenced, canopy, shaded, riverine, blue-

green algae LULC emission coefficient, kv,s was the scattering cross 
section, and kv,a was the absorption cross section. We noticed that 
in our model the differences were essentially due to the various 
forms for the canopy-related emission and absorption coefficients. 
The emission coefficient and absorption coefficient are functions 
of temperature and density are related by: v

v
v

j
B (T)

a
=  where is the 

black body spectral radiance at temperature T [www.esri.com]. The 
solution to the equation of our predictive radiative transfer was then: 

file:///E:/Journals/Life%20Sciences/JGRS%20(JRSG)/Volume%205/Volume%205.3/JRSG5.3_AI/www.esri.com
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Figure 5: Geo-spectrotemporally quantitatively interpolated blue green algae 
endmember signature map for determining Cholera risk.

v 0 v

0

s(s ,s) (s ,s)
v v 0 vs

I (s) I (s ) e B (T(s )e ds′−τ −τ′ ′= + ∫
We employed the Eddington approximation for inserting our 

seasonal-sampled remote explanatory covariates. The Eddington 
approximation is a special case of the two stream approximation 
commonly applied in spectral unmixing algorithms [www.esri.com]. 
The approximation assumed that the intensity in the georefernced, 
canopied, riverine, blue-green algae LULC was a linear function of 

vcos (i.e., I ( , z) a(z) b(z))µ = θ µ = +µ

where z was the normal direction to the medium. Note that 
expressing angular integrals in terms of μ simplified inserting the 
sampled covariates asdµ--sinθdθ which appeared in the Jacobian of 
integrals as spherical coordinates.

Spatial linear predictors were generated from the canopy, shaded, 
blue-green algae LULC and the riffled water components using an 
ordinary kriged-based interpolator and traditional LandsatTM data. 
The dependent variable was the spectral emissivity estimates generated 
from the decomposition of the LandsatTM pixel which was transformed 
to fulfill the diagnostic normality test prior to performing kriging. 
The Ordinary kriged-based algorithm was then used to generate 
predictive, autoregressive, risk maps. Ordinary kriging was selected 
to interpolate the value Z(x0), the blue-green algae LULC and riffle 

water components, Z(x), at an unobserved bloom location x0 from the 
field and remote-sampled covariate coefficient estimates and zi=Z(xi), 
i=1..., n at nearby predicted riverine locations, x1, xn. Ordinary kriging 
is computed as a linear unbiased estimator, 0 0(x )of Z(x )− , based on 
a stochastic model of the dependence quantified by the variogram 
(x,y) and by the expectation (x)=E[Z(x)] and the covariance function 
c(x,y) of the random field [2]. The kriging estimator was given by a 
linear combination of the algorithm: using the canopy, shaded-related, 
endmember, spectral dataset of i tz Z(x )=  with weights wl(x0), i=1, n 
chosen such that the variance in the spectral autoregressive predictive 
model was calculated using which was further minimized similar to the 
interpolation in the model using multiple unmixing algorithms. and 
the ENVI classifiers.

Results and Discussion
A digital elevation and NDVI map of Ecuador illustrates the 

varied topographical features which should be taken into account 
to assess risk. In addition, freely available satellite imagery for this 
country focuses on the central region, which illustrates the utility of 
an interpolation signature method for areas in which satellite data 
may not be available. This simulation demonstrates that with the usage 
of concrete data – such as specific cholera case rates at the parish or 
district level, and enough satellite data to identify the presence and 
abundance of blue-green algae, the relationship between this type of 
vegetation and cholera incidence, and thus the potential for future 
outbreaks – can be assessed with precision.

Conclusion
In its 2012 epidemiological report on cholera in the year 2011, the 

WHO asserted the necessity to shift from cholera emergency response 
toward prevention, including a focus on behavior change [3]. However, 
due to the geographic and environmental conditions that favor bacterial 
growth – in addition to socioeconomic conditions – some communities 
are far more at risk of cholera than others. An interpolation technique 
has the potential to go a long way toward a seasonal detection system 
for this serious water-borne disease.

References

1.	 Malavade SS, Narvaez A, Mitra A, Ochoa T, Naik E, et al. (2011) Cholera in 
Ecuador: Current relevance of past lessons learnt. J Global Infect Dis 3: 189-
194.

2.	 Tauxe RV, Mintz ED, Quick RE (1995) Epidemic cholera in the new world: 
translating field epidemiology into new prevention strategies. Emerging 
Infectious Diseases 1: 141.

3.	 WHO (2012) Cholera: Weekly epidemiological record, Geneva. Organisation 
mondiale de la Santé, Geneva, Switzerland. 

4.	 Kumate J, Sepúlveda J, Gutiérrez G (1998) Cholera epidemiology in Latin 
America and perspectives for eradication. Bull Inst Pasteur 96: 217-226.

5.	 Fernandez MAL, Schomaker M, Mason PR, Fesselet JF, Baudot Y, et al. 
(2012) Elevation and cholera: an epidemiological spatial analysis of the cholera 
epidemic in Harare, Zimbabwe, 2008-2009. BMC public health 12: 442.

6.	 Ali M, Emch M, Donnay JP, Yunus M, Sack RB (2002) Identifying environmental 
risk factors for endemic cholera: a raster GIS approach. Health place 8: 201-
210.

7.	 Chevallier E, Grand A, Azais JM (2004) Spatial and temporal distribution of 
cholera in Ecuador between 1991 and 1996. Eur J Public Health 14: 274-279.

8.	 Bates SJ, Trostle J, Cevallos WT, Hubbard A, Eisenberg JN (2007) Relating 
diarrheal disease to social networks and the geographic configuration of 
communities in rural Ecuador. Am J Epidemiol 166: 1088-1095.

http://www.jgid.org/article.asp?issn=0974-777X;year=2011;volume=3;issue=2;spage=189;epage=194;aulast=Malavade
http://www.jgid.org/article.asp?issn=0974-777X;year=2011;volume=3;issue=2;spage=189;epage=194;aulast=Malavade
http://www.jgid.org/article.asp?issn=0974-777X;year=2011;volume=3;issue=2;spage=189;epage=194;aulast=Malavade
https://wwwnc.cdc.gov/eid/article/1/4/95-0408_article
https://wwwnc.cdc.gov/eid/article/1/4/95-0408_article
https://wwwnc.cdc.gov/eid/article/1/4/95-0408_article
http://www.who.int/wer/2012/wer8731_32.pdf
http://www.who.int/wer/2012/wer8731_32.pdf
http://www.sciencedirect.com/science/article/pii/S0020245299800025
http://www.sciencedirect.com/science/article/pii/S0020245299800025
https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-442
https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-442
https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-442
http://www.sciencedirect.com/science/article/pii/S1353829201000430
http://www.sciencedirect.com/science/article/pii/S1353829201000430
http://www.sciencedirect.com/science/article/pii/S1353829201000430
http://eurpub.oxfordjournals.org/content/14/3/274.long
http://eurpub.oxfordjournals.org/content/14/3/274.long
http://aje.oxfordjournals.org/content/166/9/1088
http://aje.oxfordjournals.org/content/166/9/1088
http://aje.oxfordjournals.org/content/166/9/1088


Citation: Panchang S, Alao S, Jacob GB, Izurieta R (2016) Mapping Minimum and Maximum Standard Deviation 3-Dimensionsional Slope Coefficients 
for Geo-spectrotemporally Iteratively Quantitatively Interpolating an End-member Proxy Signature of Cyanobacteria (Blue-green Algae) 
for Eco-cartographically Delineating Cholera Risk in a Riverine Tributary Ecosystem in Ecuador. J Remote Sensing & GIS 5: 180. doi: 
10.4180/2469-4134.1000180

Page 8 of 8

Volume 5 • Issue 4 • 1000180
J Remote Sensing & GIS
ISSN: 2469-4134 JRSG, an open access journal 

9. de Magny GC, Murtugudde R, Sapiano MR, Nizam A, Brown CW, et al. (2008) 
Environmental signatures associated with cholera epidemics. Proceedings of
the National Academy of Sciences 105: 17676-17681.

10.	Islam MS, Drasar BS, Sack RB (1994) Probable role of blue-green algae
in maintaining endemicity and seasonality of cholera in Bangladesh: a
hypothesis. J Diarrhoeal Dis Res 12: 245-256.

11. Islam MS, Drasar BS, Bradley DJ (1990) Long-term persistence of toxigenic
Vibrio cholerae 01 in the mucilaginous sheath of a blue-green alga, Anabaena
variabilis. J Trop Med Hyg 93: 133-139.

12.	Epstein PR (1993) Algal blooms in the spread and persistence of cholera.
Biosystems 31: 209-221.

https://www.jstor.org/stable/25465343?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/25465343?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/25465343?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/23498643?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/23498643?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/23498643?seq=1#page_scan_tab_contents
http://www.pubpdf.com/pub/2109096/Long-term-persistence-of-toxigenic-Vibrio-cholerae-01-in-the-mucilaginous-sheath-of-a-blue-green-alg
http://www.pubpdf.com/pub/2109096/Long-term-persistence-of-toxigenic-Vibrio-cholerae-01-in-the-mucilaginous-sheath-of-a-blue-green-alg
http://www.pubpdf.com/pub/2109096/Long-term-persistence-of-toxigenic-Vibrio-cholerae-01-in-the-mucilaginous-sheath-of-a-blue-green-alg
http://www.sciencedirect.com/science/article/pii/030326479390050M
http://www.sciencedirect.com/science/article/pii/030326479390050M

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Methodology 
	Environmental parameters 
	Ecohydrological and vegetation models  
	Object-Oriented classification 
	The successive projection algorithm (SPA) 
	Interpolation analyses  

	Results and Discussion 
	Conclusion 
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	References 

