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INTRODUCTION
Traumatic aortic injury (TAI) is the second leading cause of death 
in multi-trauma patients and requires urgent management [1]. 
Although only 38% of patients survive following acute aortic 
injury, better management at the scene of the accident and quicker 
transportation to hospitals has led to improvements in overall 
survival, with only 4% of patients dying en route [2]. Nonetheless, 
mortality around the time of the injury remains high, estimated at 
20% in the 24 hours following hospital admission [3].

Retrospective studies around predicting mortality in TAI show 
that thoracic endovascular aortic repair (TEVAR) is associated 
with improved outcomes compared with open repair, specifically 
lower mortality and lower incidence of spinal cord ischemia [4,5]. 
These works predominantly report the effects of non-operative 
management, TEVAR, or open aortic repair and control only for 
major demographic factors when evaluating outcomes. However, 
there are no comprehensive studies that include more detailed 
comorbidities, complications, and injury types that may affect 
outcomes in patients with TAI.

Modern machine learning (ML) methods and advances in 
hardware have enabled development of robust prediction models 
that integrate thousands of features, far beyond what is possible 
in traditional multivariate analysis. In Emergency Medicine, ML 
models have been developed for a variety of pathologies, including 
acute kidney injury, influenza, and sepsis [6–8]. In this study, we 
aimed to develop an ML model to predict survival in TAI using 
detailed patient information available on arrival and throughout 
the hospital stay.

To gather sufficient data for evaluation of outcomes in TAI, we 
leveraged the National Trauma Data Bank (NTDB)-a large data 
repository that encompasses a wide variety of traumatic injuries, 
interventions, and outcomes in trauma patients [9]. The NTDB 
is compiled annually by the American College of Surgeons (ACS) 
using standardized data contributions from trauma hospitals 
across the U.S. Several studies have applied machine learning 
techniques to the NTDB to investigate clinical problems such as 
traumatic brain injury (TBI) and overall trauma severity; however 
these studies often focus only on limited portions of the available 
data or create trauma models that are too general for more rare 
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pathologies such as TAI. For example, Abujaber et al. discard 
30% of patients with TBI due to missing data and use a hand-
selected list of features rather than the entirety of data available 
[10]. Gorczyca et al. created a new general trauma severity model 
but do not report performance for any specific pathology [11].

In this work, we leverage all available data fields in the NTDB 
to answer a specific clinical question and implement feature 
engineering techniques to improve model performance. These 
pre-processing techniques are generalizable regardless of the 
clinical application, and therefore can be used to more easily 
create pathology-specific models that may highlight patterns in 
patient outcomes. We also report the performance of multiple 
types of ML architectures and provide explainable results with 
feature importance from our top-performing model.

METHODOLOGY

Cohort selection

We focused on NTDB data from 2011 to 2015 for uniformity 
in international classification of disease 9th edition (ICD-9) 
diagnostic codes. There were 5.1M recorded trauma incidents 
with each row in the dataset representing one incident. Individual 
patients are not tracked in the dataset so multiple incidents per 
patient could not be evaluated.

Patient selection and outcomes categorization

To identify incidents with TAI, we filtered based on ICD-9 
diagnostic codes of 901.0, 902.0, and 441.* which are specific 
to dissection or other injury of the thoracic or abdominal aorta, 
yielding 12,435 unique incidents. The NTDB contains 18 
possible patient dispositions ranging from discharged, deceased, 
or transfer to various facilities. Outcomes were binarized as 
survival (alive) or non-survival (deceased) based on these codes 
(Figure 1). Specifically, dispositions that included deceased, 
expired, or hospice were considered as the deceased class, and 

all other codes including discharge or transfer to another short 
term or long-term care facility were considered as the alive class. 
Patients who did not have disposition information were excluded, 
yielding 9,294 remaining incidents.

Data elements and model types

There are over 23,000 discrete data elements in the NTDB, 
including ICD-9 diagnostic (DCODE) and procedural (PCODE) 
codes, abbreviated injury scale (AIS) codes, emergency medical 
service (EMS) response time, emergency codes (ECODE), method 
of arrival, ED vital signs, patient demographics, and payment 
methods. Because the NTDB does not include timestamps for 
most data (with the exception of PCODEs), we developed two 
models using different data elements: 1) Full Data model-using all 
available data throughout the hospitalization, and 2) Prospective 
model – including only data available within the first hour of 
presentation, thereby excluding DCODEs, complications, and 
any PCODEs after the first hour.

Feature engineering

Each data element is contained within individual .csv files that 
are linked by trauma incident keys. Data was imported into 
Pandas data frames inside of Python [12, 13]. Empty fields for 
each feature were replaced with a negative value to avoid the need 
to removal the entire sample while still allowing the model to 
effectively ignore the feature for that sample. To make the data 
more manageable for machine learning models, we employed 
several feature engineering techniques on each data element that 
are detailed below. These techniques can be employed for many 
different machine learning projects for the NTDB, although 
they may have to be tailored based on the patient cohort and 
clinical problem of interest. An overview of feature engineering 
is presented in (Figure 2) and details on each major data type are 
outlined subsequently. 

Figure 1: Schematic of patient selection. Traumatic aortic injury was identified using ICD-9 
codes. Outcomes were identified using the disposition field in the NTDB. Blue represent the 
deceased class, yellow and orange represent the alive class, and gray represents cases that were 
excluded due to lack of disposition information.
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Diagnostic codes (DCODE)

The ICD-9 database contains over 13,000 unique possible which 
and are represented for each incident using the DCODE variable. 
Coding using ICD-10 began in 2016 so these cases were excluded. 
ICD-9 codes typically consist of stem 3 digits indicating a major 
category, followed by decimal and 2 more digits indicating finer 
details. Our dataset contained 4220 unique DCODEs, and 
original attempts to train a model with all 4220 codes were 
unsuccessful due to data sparsity. To reduce dimensionality 
while maintaining major diagnostic categories, we truncated the 
final two digits and only considered the parent class in ICD-9 
terminology, resulting in 556 remaining unique DCODEs. For 
instance, the original DCODE 850.12 denotes “Concussion, with 
loss of consciousness from 31 to 59 minutes.” When truncated to 
850, the parent class of “Concussion” remains, retaining valuable 
clinical information.

Procedure codes (PCODE)

ICD-9 procedural codes are represented by the PCODE variable. 
Each trauma incident contains one list of PCODEs and a second 
list representing the time of occurrence of each PCODE. The 
original size of PCODEs variable for our dataset was 4,932 unique 
values. Similar to DCODEs, representing the raw data created 
a very sparse dataset. Initially, we removed the final two digits 
from the PCODE to reduce dimensionality, but this removed 
valuable procedure details. We also attempted encoding the 
PCODE vector using an auto encoder model, but this eliminated 
the time of occurrence from the data. Ultimately, the best results 
were obtained by retaining each PCODE in its original form 
and encoding the time of first occurrence for each PCODE 
after one hot encoding. For example, for a given incident with 
original PCODE list of [793.19,39.73, and 793.13] with times 
of [30,90,360] minutes, the final data would be represented as 
only two elements: [793.19,30] and [39.73,90] with removal of 
the second occurrence of 793.13.

Abbreviated injury scale score 

The Abbreviated Injury Scale (AIS) Score is represented by a 
PREDOT code and severity score. In the PREDOT code, the first 
digit denotes the body region of the injury (head, face, neck, thorax, 
etc.), the second digit denotes the type of anatomic structure 
(vessels, nerves, organs, skeletal, etc.), and digits 3-6 describe the 
nature and level of the injury (abrasion, contusion, amputation, 
burn, etc.). The original dataset contained 329 unique AIS codes 
with a sparse feature space. To reduce dimensionality, we retained 
only the first two digits of the PREDOT code resulting in 32 
remaining features.

Other features included in model

Vital signs include pulse, systolic blood pressure (SBP), Glasgow 
Coma Scale Total (GCSTOT), and oxygen saturation (OXYSAT) 
on arrival. The GCS total is represented by integers 1-15. Pulse, 
SBP, and OXYSAT are represented as continuous variables. 
EMSMINS represents the elapsed time between EMS transport 
dispatch to its arrival on the scene.

Comorbid

Comorbid represents pre-existing comorbidities for the patient 
and is represented by 25 unique elements including diabetes, 
hypertension, obesity, etc. Three elements-“other”, “not 
applicable” and “not recorded” , were removed.

Complic 

Complic represents any complications that occurred after 
patient arrival, and is represented by 25 unique elements such 
as pulmonary embolism, pneumonia, or surgical site infections. 
Similar to comorbidities, we removed the elements “other”, “not 
applicable” and “not recorded.”

Ecode 

Ecode represents the ICD-9 external cause of injury, such as motor 
vehicle, fall, struck by/against, firearm, or poisoning. There were 

Figure 2: Overall schematic of feature engineering to reduce data sparseness and improve model 
performance. Raw data is represented in green, post-processing steps to reduce dimensionality 
are in yellow, and final data representation is in red. OHE = one hot encoding.
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250 ECODEs in our dataset, and no feature engineering was 
performed.

Finally, demographic information includes age, gender, race, and 
ethnicity. Payment information includes the method of payment 
from the patient and includes elements such as self-pay, Medicare, 
government, or private insurance. Demographics and payment 
information were included in their original forms.

Discriminative model selection and evaluation

Multiple classification models were tested, including Logistic 
Regression (LR), k-Nearest Neighbors (KNN), extreme gradient 
boosting (XG Boost), radial basis function SVM (RBF SVM), 
Multilayer Perceptron (MLP), Random Forest (RF) [14], and an 
ensemble of these models. Oversampling was used to handle the 
class imbalance between alive and deceased for all models. Each 
model was trained using five-fold cross validation and grid search 
over the hyper parameters. Using the parameters that maximize 
recall on the validation set, the model predicts and outputs the 
labels for the test set. For each model, the class-wise accuracy, 
recall, precision, and F1-score are reported.

RESULTS 
Patient summary statistics

Of 9,294 trauma incidents, 73.8% (6,855) occurred in males and 

26.2% (2,437) occurred in females and two were of unknown 
gender. Survival was 74.3% in males and 79.8% in females. Age 
was similar between groups with mean age of 42.2+/-30.0 years 
in the alive class and 39.7+/-33.1 years in the deceased class 
(Table 1 and Figure 3). Overall racial distribution of patients was 
66.3% white and 17.5% black; however death rate was higher 
in blacks (37.9%) as compared to whites (19.7%). Sample size 
for other races was too small to draw conclusions. There were 
also disparities in outcomes based on payment method, with 
death rates between 14.9-17.1% for privately insured patients, as 
compared to death rates of 20.5 – 41.7% for Medicare, Medicaid, 
and self-pay patients.

Model performance

Feature engineering netted a 65.2% compression in the feature 
space, from an initial size of 9,907 to a final total of 3,444 
features. DCODEs, PCODEs, and AIS codes were responsible 
for the greatest reduction (Table 2).

Overall, the Full Data model performed slightly better than 
the Prospective model and both models performed better after 
feature engineering, although absolute performance differences 
varied based upon the model architecture. Performances were 
averaged over 100 iterations of random bootstrapping and results 
are summarized in (Table 3).

Table 1: Demographics distribution of patients. Overall survival was similar between genders, although there were significantly more male patients than 
female overall. Self-pay, Medicare, Medicaid, and other government coverage patients overall had higher rates of death as compared to privately insured 
patients. African American patients also had higher rates of death than white patients.

 Alive (n=7,036) Deceased (n=2,258)
Age and Gender

Age (yr) 42.2 ± 30.0 39.7 ± 33.1
Female 1944 (80%) 493 (20%)
Male 5091 (74%) 1764 (26%)

Payment
Blue cross / Blue shield 325 (85%) 57 (15%)

Medicaid 784 (77%) 236 (23%)
Medicare 1199 (80%) 309 (20%)
No fault 821 (78%) 228 (22%)

Not applicable 91 (81%) 21 (19%)
Not billed 22 (38%) 36 (62%)
Unknown 321 (74%) 115 (26%)

Other 309 (78%) 88 (22%)
Other government 237 (73%) 87 (27%)

Private / Commercial 1837 (83%) 379 (17%)
Selfpay 945 (58%) 676 (42%)

Workers compensation 145 (85%) 26 (15%)
Race

White 4943 (80%) 1215 (20%)
African american 1013 (62%) 617 (38%)

Asian 119 (68%) 55 (32%)
American indian 51 (81%) 12 (19%)

Hawaiian / Pacific islander 14 (54%) 12 (46%)
Not applicable 43 (83%) 9 (17%)

Unknown 222 (68%) 105 (32%)
Other 631 (73%) 233 (27%)
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Figure 3: Demographics and vital signs between alive (orange) and 
deceased (grey) classes. GCS score was lower in the deceased class, 
whereas other vital signs were similar. Mean EMS time trended lower 
for the deceased class.

Table 2: Results of feature engineering, netting a 65% decrease in total features for the dataset. This allows models to converge more easily, resulting in better 
model performance. Feature reduction also increased model interpretability and generalizability by decreasing the chance of overfitting.

Data type Original size Final size % Reduction

Comorbidities 30 30 0

Pulse 1 1 0

Systolic blood 1 1 0

Pressure    

GCS total 1 1 0

Oxygen saturation 1 1 0

E-codes 250 250 0

Age 1 1 0

Gender 3 3 0

Race 8 8 0

Ethnicity 4 4 0

Facility key 1 1 0

D-codes 4220 556 86.82

Complications 23 23 0

Hospital discharge 18 2 88.89

Payment 12 12 0

AIS codes 329 32 90.27

EMSMINS 1 1 0

P-codes and 4932 2466 50

Time    

All features 9907 3444 65.24
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The top performing architecture for both the Full Data and 
Prospective models was XG Boost using 1,000 trees, with overall 
accuracies of 0.893 and 0.855, respectively. Area under the ROC 
and precision-recall curves were only slightly decreased for the 
Prospective model compared to Full Data model (Figure 4). 
Performance suffered most for recall in the deceased class for the 
Prospective model. The underlying reason for top performance 
of the XG Boost model can be attributed to the way in which 
weak learners are converted to strong learners through weight 
adjustments over multiple model iterations. This reduces bias 
from the model and improves accuracy. Other advantages of XG 
Boost are that it is highly scalable/ parallelizable and has high 
execution efficiency.

Feature importances Model performance

Overall top features: Top feature importance’s for the both 
the Full Data and Prospective models are shown in (Figure 5), 
demonstrating that the Glasgow Coma Scale (GCS) score is 
the most important feature predicting survival. This, along 
with feature 4 (AIS for head injury) and feature 6 (ICD-9 for 
concussion) in the Full Data model, suggests that patients with 
concurrent head trauma are much less likely to survive, either 
due to direct neurologic damage or possibly from autonomic 
deregulation. A cohort study conducted by Indiana University 
School of Medicine and Rehabilitation Hospital showed that the 

hazard of death after traumatic brain injury (TBI) was higher for 
all TBI injury classification categories as compared to non-head 
traumatic injuries during the entire follow-up period [15]. For the 
Prospective model, presence of early thoracotomy was a predictor 
for poor survival as was being a self-pay patient. The latter could be 
related to multiple confounding factors, including self-pay patients 
being more likely to be in previously poor health, indigent, or more 
severely injured and presenting to inner-city hospitals. Smoking 
was an important comorbidity for both models, likely related to 
underlying vascular disease. Complications of pneumonia and 
urinary tract infection important predictors considered only in 
the Full Data model since they occur after hospitalization. Lack 
of insurance and advanced directives limiting care were both 
important contributors to death. 

Procedure codes: Endovascular graft implantation was the 
third most important procedure code in the Full Data model 
indicating that this is common in patients that survive (Figure 6). 
This is corroborated by previous studies highlighting improved 
outcomes in patients undergoing TEVAR, and that patients 
presenting to locations where this is unavailable may have 
worse outcomes. Results from multicenter clinical trials have 
demonstrated many early benefits of TEVAR as compared with 
standard surgical repair, such as less blood loss and transfusion 
requirement, reduced ICU utilization, shorter procedure times, 
decreased length of hospital stay, lower rates of major adverse 

Table 3: Model performances before and after feature engineering for the Full Data and Prospective models. Feature engineering resulted in increases 
in performance all models, although gains were modest for XGBoost. Performance decreased slightly overall for the Prospective model, with the biggest 
performance decrease in recall for the deceased class.

Before feature engineering After feature engineering

Model
Precision Recall F1-score Precision Recall F1-score Overall 

accuracy
Precision Recall

F1-
score

Precision Recall
F1-

score Overall 
accuracy

Alive Deceased Alive Deceased

Full data model - using all features

LR 0.913 0.659 0.765 0.427 0.801 0.557 0.693 0.945 0.822 0.879 0.582 0.84 0.687 0.826

KNN 0.901 0.731 0.807 0.46 0.74 0.567 0.733 0.911 0.806 0.856 0.563 0.76 0.647 0.795

XGBoost 0.917 0.934 0.926 0.8 0.758 0.778 0.889 0.923 0.938 0.931 0.787 0.745 0.766 0.893

RBF SVM 0.886 0.902 0.894 0.674 0.635 0.654 0.838 0.931 0.903 0.917 0.727 0.794 0.759 0.876

MLP 0.907 0.638 0.749 0.423 0.803 0.554 0.679 0.923 0.9 0.911 0.689 0.746 0.716 0.865

RF 0.927 0.761 0.836 0.52 0.813 0.634 0.774 0.897 0.961 0.918 0.833 0.597 0.695 0.871

Ensemble 0.907 0.77 0.829 0.551 0.757 0.623 0.766 0.911 0.878 0.899 0.731 0.783 0.701 0.875

Prospective model - using features available within first hour of arrival

LR 0.759 0.688 0.721 0.512 0.6 0.533 0.657 0.81 0.749 0.778 0.51 0.597 0.55 0.703

KNN 0.812 0.794 0.803 0.614 0.642 0.628 0.742 0.811 0.78 0.795 0.539 0.585 0.561 0.721

XGBoost 0.817 0.879 0.847 0.714 0.606 0.656 0.788 0.867 0.936 0.9 0.818 0.668 0.736 0.855

RBF SVM 0.731 0.725 0.728 0.471 0.478 0.474 0.641 0.789 0.854 0.82 0.555 0.443 0.493 0.735

MLP 0.621 1 0.766 0 0 0 0.621 0.748 0.53 0.621 0.338 0.574 0.425 0.543

RF 0.773 0.928 0.844 0.821 0.534 0.645 0.783 0.808 0.966 0.88 0.852 0.464 0.601 0.815

Ensemble 0.801 0.831 0.746 0.698 0.54 0.643 0.71 0.804 0.892 0.879 0.793 0.655 0.724 0.841
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Cardiac injury, dissection, and pneumothorax were the remaining 
top features.

AIS codes: Most injury types were more common in the deceased 
class, including head and facial injuries as previously observed 
(Figure 8). Abdominal vascular and organ injury were also more 
common in the deceased group. Interestingly thoracic skeletal 
and organ injury was slightly more common in the alive group, as 
was lower extremity injury. This may be related to bias in coding 
rather than true differences in injury patterns.

Other features: Mean GCS score was 12.6 ± 4.3 in alive patients 
and 7.5 ± 5.3 in deceased patients (Figure 8). Vital signs including 
pulse, oxygen saturation, and blood pressure on arrival were not 
significantly different between classes. Mean time of EMS arrival 
trended lower in the deceased class, suggesting that delay in 
hospital transfer was not responsible for death in most patients.

events, and quicker recover [16]. The mean time for each of the 
top procedures was calculated between the groups, and there was 
no statistical difference, although both exploratory thoracotomy 
and laparotomy trended earlier in the deceased group (3 ± 26 
and 9 ± 58 min) than the alive group (69 ± 154 and 30 ± 106 
min). Mean time for TEVAR was not significantly different in 
the deceased (28 ± 146 min) versus alive group (35 ± 90 min). 
Other procedure codes including open chest cardiac massage, 
cardiopulmonary resuscitation (CPR), and transfusion were 
associated with poor survival.

Diagnostic codes: The highest weighted diagnostic codes in the 
Full Data model were presence of concussion and intracranial 
hemorrhage, again indicating that head trauma portends a 
poor prognosis (Figure 7). Splenic injury and abdominal aortic 
injuries were the next two most important features, indicating 
that concurrent blunt abdominal injury carries a poor prognosis. 

Figure 4: Receiving operating characteristic (left) and precision-recall curve (right) for the Full 
Data (green) and Prospective (blue) models. There was a small drop in all metrics for the 
Prospective model (blue) which excluded DCODES, complications, and any PCODE after the 
first hour. However both models still demonstrate high predictive performance.

Figure 5: Overall feature importance for all data in the Full Data (left) and Prospective Data 
(right) models. Glasgow Coma Scale score was the most important feature for both models, 
indicating that concomitant head injury is a strong predictor of survival. Smoking history 
was highly predictive for both models and complications of pneumonia and urinary tract 
infection after hospitalization was predictive in the Full Data model. Procedures including 
open thoracotomy within the first hour, cardiac massage, and resuscitation were also associated 
with poor survival.
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Figure 6: Most predictive procedure codes (PCODE) that contributed to performance of the 
Full Data model. Cardiac massage and CPR were the top predictors for death, while thoracic 
endovascular graft implantation (TEVAR) was associated with survival. Both exploratory 
thoracotomy and laparotomy occurred much more frequently in deceased patients.

Figure 7: The top 10 most predictive diagnostic codes (DCODE) that contributed to model 
performance. Head injuries were the two most important diagnostic codes, followed by splenic 
and abdominal aortic injury indicating blunt abdominal trauma.

Figure 8: Top predictive AIS codes that contributed to model performance. Head injuries were 
more common in the deceased class, as were abdominal vascular and organ injury. Concurrent 
thoracic organ and skeletal injuries were also more common in the deceased class.
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DISCUSSION
We demonstrate that machine learning is a powerful tool to 
examine factors that contribute to survival in trauma patients. To 
our knowledge, this is the first published machine learning model 
for predicting survival in TAI. Our models were able to leverage 
all available data in the NTDB with no hand-selected features and 
yield accuracies above 85% in predicting survival. It is interesting 
to note that the Full Data model achieved only slightly higher 
overall performance that the Prospective model despite five out of 
the top ten features in the Full Data model being complications, 
comorbidities, and diagnostic codes which were not available to 
the Prospective model. This suggests that the Prospective model 
was able to learn substantially different patterns in the data with 
information available only within the first hour of arrival, and 
that a patient’s likelihood of survival is largely determined within 
the first hour of their presentation. However, it is noteworthy 
that recall for the deceased class suffered the biggest performance 
drop in the Prospective model, indicating that complications or 
later procedures during hospitalization affect survival. Feature 
engineering was very important to improving model performance, 
and our techniques can be re-used by other groups to more easily 
investigate other clinical questions using the NTDB.

Our results also raise concerns around disparities in outcomes 
dependent upon race and insurance status. Black patients were 
more likely to die following TAI, as were poor patients with 
Medicaid or no insurance (self-pay). Whether this is related to 
their quality of care cannot be determined, but it is possible that 
patients of lower socioeconomic status or racial minorities may 
be more likely to suffer serious injuries, have less access to high 
quality care, or have worse pre-existing health.

In both models, the GCS score on arrival was the single most 
important predictor of survival for all patients with TAI. This is 
expected, as deaths from head injuries account for 34 percent of 
all traumatic deaths which may overlap with patients with TAI 
[17]. However, there were no significant differences in age, pulse, 
or blood pressure on arrival between the classes. Smoking was 
overall associated with worse increased risk death in both models, 
and complications of pneumonia and urinary tract infection also 
contributed to death in the Full Data model.

Our results showed that endovascular graft implantation was 
much more common in patients that survived than those who 
did not, in keeping with published literature. However, this shows 
correlation and not necessarily causality because of intrinsic 
differences in patients who are eligible for graft implantation 
such as other concurrent injuries, severity of vascular injury, and 
hemodynamic stability.

Open laparotomy and thoracotomy were highly associated with 
death in both models and trended earlier in the deceased class, 
meaning that patients who require these procedures early due 
to other thoracic or abdominal injuries (e.g. penetrating trauma, 
bowel injury, etc.) have poor prognosis. Similarly, open chest 

cardiac massage and CPR were associated with death and it 
is known that survival following either of these procedures, 
regardless of root cause, is very low.

This study has limitations. First, model predictions could not be 
made continuously during an admission due to lack of timestamp 
data; rather, they could be made shortly after arrival or at the 
conclusion of care. This means that we could not compare the 
true hospital course of a patient following specific procedures 
such as TEVAR. Second, although this dataset is the largest 
dataset for TAI with 12,435 patients, this is still a relatively small 
number of samples for traditional machine learning methods 
and therefore model performance was somewhat lower than 
more general tools for survival in trauma patients. Lastly, we were 
unable to externally validate the model on a local dataset due 
to differences in data structures; however, because the NTDB is 
sampled from trauma centers nationwide, these results should be 
generalizable across patient populations and geographies.

CONCLUSION
In conclusion, we present a machine learning framework for 
using the NTDB to evaluate factors that contribute to patient 
survival in patients with traumatic aortic injury, and demonstrate 
that feature engineering is a crucial step in improving model 
performance and making results interpretable. All data pre-
processing steps and the final model will be released publicly to 
enable other groups to leverage the NTDB to investigate other 
important clinical questions.
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