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Recent advances in clinical and experimental oncology and 
immunology have markedly expanded our understanding of the role of 
the immune system response to precancerous cells, their malignization 
and expansion, as well as to tumor formation, growth and progression. 
These achievements resulted in development of improved and novel 
therapeutic modalities, which involve the treatment of cancer by 
modification of the host-tumor relationship. For instance, the main 
goal of antitumor immunotherapy is to provide either passive or 
active long-lasting immunity against malignancies by controlling the 
immune system responsiveness to tumors. Much of the success of anti-
cancer immunotherapeutics has come from monoclonal antibodies 
delivering their biological activities either through immune-related 
effector functions, specific delivering of anticancer agents or by 
inhibiting dysregulated ligand-receptor interactions. However, despite 
their significant clinical success, antibodies have several well-known 
limitations, including expensive manufacturing, limited penetration 
into the tumor mass and some potential undesired systemic effects. 
Therefore, in addition to the therapeutic antibodies, immunomodulators 
(e.g., TLR ligands, thalidomide and its analogues, Lactoferrin), 
cytokines/chemokines/growth factors, cellular immunotherapy and 
vaccines have increasingly become thriving therapeutic agents for 
the treatment of solid and hematological malignancies in preclinical 
models, clinical trials and even clinical practice.

Although immunotherapy has emerged as an alternative option 
for the treatment of cancer patients in the last decades, the presented 
evidence indicates that both active and adoptive immunotherapeutic 
strategies are somewhat effective against small tumor burdens, but are 
generally insufficient to eliminate the disease in patients with advanced 
stage cancer, despite induction of tumor-specific immune responses 
[1]. Furthermore, while vaccine approaches have had some clinical 
achievement, most cancer vaccines fail to induce objective tumor 
shrinkage in patients. New modalities have centered on a group of 
molecules known as immune checkpoints, since their function is to 
contain or diminish potentially exuberant reactions. Antibody-based 
blocking of immune checkpoint molecules has emerged as a viable 
clinical approach that mediates tumor shrinkage in several cancer types. 
In addition to being part of the current treatment armamentarium 
for metastatic melanoma, immune checkpoint blockade is currently 
undergoing phase III testing in several cancer types [2]. Targeting 
co-inhibitory and co-stimulatory receptors with immunostimulatory 
antibodies has also shown clinical promise and its combined use with 
vaccines is a promising new approach of immunotherapy for cancer 
[1].

Advances in our understanding of the primary mechanisms of 
immune and cancerous cell interactions and the functioning of the 
tumor immunoenvironment have also provided the platform for 
combining cancer vaccines with chemotherapies neutralizing, to 
some extent, tumor-induced suppressive network and demonstrating 
clinical efficacy. A growing body of clinical data suggests that despite 
the great specificity that can be achieved with immunotherapy and the 

potency of cytotoxic anticancer agents, neither of these two modalities 
by itself has been sufficient to eradicate the disease [3]. Therefore, 
the combination of chemotherapy and immunotherapy is no longer 
considered incompatible, because of the emerging insight that certain 
chemotherapy-based cancer treatments may activate the immune 
system against the tumor through several molecular and cellular 
mechanisms [4]. Indeed, certain chemotherapeutic agents have shown 
immunomodulatory activities, and several combined approaches have 
already been attempted [5]. 

Chemotherapeutics and immunotherapy may thus be 
synergistic and improve the clinical response in cancer. For instance, 
chemotherapy has been proven to enhance the efficacy of vaccination 
[6,7] and to favor the activity of adoptively transferred tumor-specific 
T cells or dendritic cells (DC) [8,9]. A potential efficacy of combining 
neo-adjuvant chemotherapy and immunotherapy with PBMC and IL-2 
in the treatment of NSCLC patients has been recently reported [10]. 
Furthermore, when combined with CTLA-4 (a cytotoxic T lymphocyte 
antigen-4) blockade, ixabepilone, etoposide and gemcitabine 
elicited prolonged antitumor effects in several murine models with 
induction of a memory immune response [11]. Other data support 
the combinatorial use of immunomodulators, such as ipilimumab 
(anti-CTLA-4 antibody), with traditional chemotherapy regimens 
to improve SCLC patient outcomes and potentially sustain the effect 
from chemotherapeutic induction [12]. Synergy is mediated by diverse 
mechanisms, including preferential depletion of regulatory T cells, 
liberation of homeostatic or inflammatory cytokines and enhanced 
immunogenicity of chemotherapy-treated tumors. Thus, chemotherapy 
may favor tumor cell death, and by that enhance tumor-antigen cross-
presentation in vivo. Drug-induced myelosuppression may induce the 
production of cytokines favoring homeostatic proliferation, and/or 
ablate immunosuppression mechanisms [3]. Furthermore, the recently 
reported synergy between monoclonal antibodies and chemotherapy 
or peptide vaccination is based upon the induction of endogenous 
humoral and cellular immune responses. This would suggest that 
monoclonal antibodies may not only provide passive immunotherapy 
but can also promote tumor-specific active immunity [1]. 

Given a growing enthusiasm to combining chemotherapeutic 
and immunomodulating agents for cancer treatment, it is important 
to notice that only a few cytotoxic drugs were proven to improve 
the therapeutic efficacy of cancer vaccines, while the majority of 
conventional chemotherapies are still immunosuppressive [5]. For 
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instance, to examine the impact of clinically relevant doses of alkylating 
chemotherapeutics (temozolomide and cyclophosphamide) on 
cancer vaccines, Litterman et al. used controlled animal experiments 
that minimized the numerous complicating factors encountered 
in human patients [13]. The results clearly demonstrated that 
alkylating chemotherapy has a long-lasting antiproliferative effect 
on lymphocytes, and this effect leads to profound impairment of 
adaptive immune responses to cancer vaccines [14]. Furthermore, 
the immunomodulating effects of chemotherapeutic agents might 
be quite complex [15]. For instance, evaluation of two clinically 
used chemotherapeutic agents, gemcitabine and 5-fluorouracil, 
known to deplete protumorigenic myeloid-derived suppressor cells 
(MDSC), revealed that they may also activate the inflammasomes 
in MDSC, leading to production of interleukin-1β (IL-1β), which 
restricts anticancer immunity [16]. Next, when cyclophosphamide 
is administered in relatively lower doses than those routinely used in 
the clinical regimen, it can augment antitumor responses as it causes 
depletion of Treg cells [17]. In contrast, cyclophosphamide-induced 
MDSC accumulation was also reported by several authors [18-20], 
as well as low-dose cyclophosphamide-induced prevention of the 
development of antitumor immune responses [21]. Thus, selection of 
an appropriate clinically relevant combination of a chemotherapeutic 
drug and a cancer vaccine is far from been accepted and should be 
strictly based on the immunomodulating properties of a cytotoxic 
agent in relation to the mechanisms of the antitumor activity of a tested 
vaccine.

Finally, recent evaluations of potential immunomodulating 
activities of chemotherapeutic agents in ultra low noncytotoxic/
noncytostatic doses resulted in introduction of a new direction of 
research – so-called, chemomodulation or chemoimmunomodulation, 
- when such activities have been proven [5]. In fact, several reports 
revealed that certain chemotherapeutic agents could up-regulate 
maturation and antigen-presenting activity of murine and human 
DC when used in ultra-low noncytotoxic concentrations in vitro [22-
24]. Recent data demonstrated that ultra-low dose paclitaxel (Taxol) 
prevented tumor-induced polarization of conventional DC into 
immunosuppressive regulatory DC (regDC) in vivo and in vitro and 
up-regulated the antitumor potential of DC vaccines [25]. Similarly, 
Zhong et al. reported that a single administration of very low-dose 
paclitaxel synergized with DC vaccine in inhibiting lung cancer growth 
in mice [26]. Interestingly, paclitaxel in ultra-low concentrations was 
also able to support differentiation of MDSC into functionally active 
DC [27]. 

Analyzing the mechanisms of chemomodulation, Sevko et al. 
investigated the effect of paclitaxel applied in ultra-low, noncytotoxic 
doses on the efficiency of immunization of healthy mice with the 
peptide derived from tyrosinase related protein (TRP)-2 as a model 
melanoma antigen [28]. They found that administration of paclitaxel 
in combination with the peptide vaccination strongly increased the 
frequencies of TRP-2 specific T cells and was associated with a significant 
decrease in the levels of regulatory T cells and MDSC. Furthermore, in 
paclitaxel-treated mice, a significant augmentation of NK cell numbers 
and their ability to produce IFN-γ were also observed [28]. Using 
the ret transgenic murine melanoma model, which mimics human 
cutaneous melanoma, the same group has tested effects of ultralow 
noncytotoxic dose of paclitaxel on MDSC, chronic inflammatory 
mediators and T cell activities in the tumor microenvironment in vivo 
[29]. Administration of paclitaxel significantly decreased accumulation 
and immunosuppressive activities of tumor-infiltrating MDSC without 

alterations of the bone marrow hematopoiesis. The production of 
mediators of chronic inflammation in the tumor milieu was also 
diminished. Importantly, reduced tumor burden and increased animal 
survival upon paclitaxel application was mediated by the restoration 
of CD8 T cell effector functions. This suggests that the ability of 
paclitaxel in a noncytotoxic dose to block the immunosuppressive 
potential of MDSC in vivo represents a new therapeutic strategy to 
down-regulate immunosuppression and chronic inflammation in the 
tumor microenvironment for enhancing the efficacy of concomitant 
anticancer therapies.

Altogether, a growing body of evidence supports a new concept 
that certain chemotherapeutic agents in ultra-low noncytotoxic 
doses may suppress tumor progression by targeting several immune 
cell populations in the tumor microenvironment, including DC and 
MDSC. New data also suggest that immunomodulating properties 
of certain chemotherapeutic agents in ultra low doses can be used to 
increase the therapeutic efficacy of cancer vaccines. However, more 
data are required in order to build a strong basis for developing novel 
clinical protocols testing the practicability and efficacy of augmentation 
of the antitumor properties of cancer vaccines combined with ultra-
low noncytotoxic doses of chemotherapeutic agents.
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