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ABSTRACT

Epidemiological application of chaos theory methods have uncovered the existence of chaotic markers in SARS-
CoV-2’s epidemiological data, including low dimensional attractors with positive Lyapunov exponents, and evidence 
markers of a dynamics that is close to the onset of chaos for different regions. We expand on these previous works, 
performing a comparative study of United States of America (USA) and Canada’s COVID-19 daily hospital occupancy 
cases, applying a combination of chaos theory, machine learning and topological data analysis methods. Both 
countries show markers of low dimensional chaos for the COVID-19 hospitalization data, with a high predictability 
for adaptive artificial intelligence systems exploiting the recurrence structure of these attractors, with more than 95% 
R2 scores for up to 42 days ahead prediction. The evidence is favorable to the USA’s hospitalizations being closer to 
the onset of chaos and more predictable than Canada, the reasons for this higher predictability are accounted for by 
using topological data analysis methods.

Keywords: SARS-CoV-2; COVID-19; Chaos theory; Recurrence analysis; Persistent homology; Machine learning; 
Adaptive AI; Epidemiology; Healthcare Management

INTRODUCTION

Epidemiological applications of chaos theory methods to the SARS-
CoV-2/COVID-19 pandemic have uncovered evidence of chaotic 
markers in the pandemics’ dynamics [1-5]. In we found evidence of 
stochastic chaos with emergent low dimensional attractors for the 
COVID-19 regional data at the level of the number of new positive 
cases per million and the number of new deaths per million, in 
particular, the type of dynamics identified was a power law chaos 
dynamics also called color chaos, characterized by power law 
signatures in the frequency spectrum, this dynamics occurred for 
Asia, Africa and Europe, while in North and South America, for 
the new cases per million, the decay in the frequency spectrum of 
the signal was faster than power law, except for the number of new 
deaths per million in the case of South America [5]. For Oceania 
we found the occurrence of a bifurcation in both series’ dynamics 
[5].

Another major finding was that all regions except Oceania showed 
evidence of being near a bifurcation point between a periodic 
window and a chaotic dynamics, also called onset of chaos [5]. 
Near the onset of chaos, chaotic attractors are characterized by 

low maximum Lyapunov exponents and can exhibit recurrences 
associated with close proximity to periodic or even quasiperiodic 
orbits, which become like “ghost trails” that are recurrently 
visited [5], leading to long evenly or unevenly spaced diagonals in 
recurrence matrices with 100% recurrence that only show up for a 
sufficiently high radius, diagonals that are intermixed with broken 
diagonals and isolated points which are characteristic of chaotic 
dynamics [6-8].

In the case of COVID-19, the proximity of the epidemiological 
dynamics to a bifurcation point opens up the possibility of 
bifurcations occurring in the system’s dynamics with the loss of 
attractor stability, this occurred specifically in Oceania, as stated 
above, and was linked to the emergence of new variants [5].

In the present work, we expand on the work we developed 
low dimensional chaotic attractors in SARS-CoV-2’s regional 
epidemiological data by combining chaos theory, machine learning 
and topological data analysis to address the daily hospital occupancy 
from COVID-19, the study compares USA with Canada, using the 
dataset available from Our Word in Data for the country-specific 
daily hospital occupancies from COVID-19 from the first available 
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attractor’s recurrences for different prediction horizons, the main 
goal of this analysis is to evaluate the degree to which the recurrence 
structures contain information that can be exploited to predict the 
target series several periods ahead, at the same time this provides an 
indicator of the strength of the deterministic component.

Topological data analysis, which will involve k-nearest neighbors’ 
graph analysis, persistent homology analysis and recurrence 
analysis, which will allow us to further characterize the attractors’ 
topological structure.

We now describe each of these methods and their role in the work.

Signal analysis methods

The signal analysis methods that we employ are aimed at 
characterizing periodicities in the main series. Spectral analysis 
will be employed in order to find possible markers of power law 
dynamics, the type of memory and possible markers of high 
frequency periodicities that may be linked to dynamics close to 
the onset of chaos, this type of analysis was already employed in 
and it proved useful for the characterization of the SARS-CoV-2’s 
epidemiological dynamics [5].

Another method is signal recurrences, in this case, we use recurrence 
analysis techniques applied not to the embedded series but to the 
original signal, this is aimed at identifying signal periodicities and 
possible persistent dynamics. In this case, we calculate the Euclidean 
distance matrix S for the signal x t  with matrix entries given by the 
Euclidean distance: 2 1/2

, [( ) ] | |t s t s t sS x x x x= − = − . From this matrix we can 
calculate the r-recurrence matrix rB , for which an entry is equal to 
0 if ,t sS r> and 0 otherwise. We calculate these r-recurrence matrices 
for different radii and, for each radii, calculate two metrics: the 
average recurrence strength and the conditional 100% recurrence 
probability. 

The average recurrence strength is defined as the sum of the 
number of points that fall within a distance no greater than the 
radius, in each diagonal below the main diagonal of the distance 
matrix s , divided by the total number of diagonals with recurrence 
below the main diagonal, this measure evaluates how strong on 
average the recurrence is discussed in quantum neural networks, 
computational field theory and dynamics [8].

The conditional 100% recurrence probability is, in turn, defined 
as the probability that a randomly chosen diagonal line with 
recurrence has 100% recurrence, for the radius chosen [5,8]. If all 
lines with recurrence had 100% recurrence, for the radius chosen, 
then this number would be equal to 1, the lower this metric is, 
that is, the closer to zero it is, the more interrupted the diagonals 
are, which occurs for stochastic dynamics and also for deterministic 
chaotic dynamics, as discussed in low dimensional chaotic attractors 
in SARS-CoV-2’s regional epidemiological data [5,8].

These two metrics allow us to further characterize a signal’s 
periodicities and how strong recurrences are, becoming a signal 
topological analysis tool complementary to the spectral analysis. 
This analysis also allows us to select possible radii for the machine 
learning component.

Delay embedding and largest Lyapunov exponent 
estimation

Delay embedding involves embedding a time series in a point 
cloud in a multidimensional Euclidean phase space, the resulting 
embedded trajectory can be research upon, including the 

data point up until 2022-09-30. The methodologies applied are 
easily extensible to any other country. The data available for the 
USA includes the period from 2020-07-15 to 2022-09-30, while for 
Canada the period is from 2020-03-09 to 2022-09-30.

The focus on the daily hospital occupancy is relevant from a 
healthcare management standpoint, since the ability to use chaos 
theory methods to predict hospital occupancies from a pandemic, 
such as the SARS-CoV-2/COVID-19 pandemic, that drains/
overloads hospital resources leading to deaths due to lack of 
resources for disease treatment, makes the prediction of hospital 
occupancies a critical healthcare management variable. 

Secondly, from an epidemiological standpoint, hospitalizations 
identified as positive cases of COVID-19 are an important indicator 
of a double factor dynamics: viral spread among the population (the 
contagion) and the associated disease risk. In this way, analyzing 
the hospitalization dynamics from COVID-19 in terms of possible 
attractor properties and predictability is a pertinent and relevant 
research from both healthcare management and epidemiological 
standpoints. 

Our findings show that both the USA and Canada show evidence 
of a stochastic chaotic dynamics characterized by power law chaos, 
with the USA attractor being nearer the onset of chaos than 
Canada.

Both countries’ attractors’ topological structure, which we 
characterize using topological data analysis, show strong enough 
recurrences to allow a high prediction performance from a forward 
looking adaptive A.I. system that uses topological information on 
these attractors and a sliding learning window, this performance 
does not drop significantly for multiple periods ahead prediction, 
indeed, the artificial agent is able to use the attractors’ recurrence 
structure to predict up to 6 weeks ahead with an R2 score that does 
not drop below 96% for the USA and 95% for Canada.

We also find that while the prediction performance is very high 
for both countries, showing that there is a strong deterministic 
pattern that can be captured for the reconstructed attractors, the 
USA series has a higher predictability than Canada, we explain this 
higher predictability through the application of both signal and 
topological data analysis which are convergent on the hypothesis 
that the USA has an attractor for the daily hospital occupancy series 
that is nearer the onset of chaos, which leaves a stronger periodicity 
topological skeleton that can be exploited by the forward looking 
adaptive AI system.

The work is divided as follows: in section 2, we review the main 
methods employed here, in section 3, we provide for the main 
results, in section 4, we provide for a final discussion on the results.

METHODOLOGY

The main methods are divided into five main parts:

Signal analysis, which includes spectral analysis and signal 
recurrence analysis.

Embedding dimension estimation which will employ machine 
learning to choose the optimal dimension from within a dimension 
set.

Maximum Lyapunov exponent’s estimation, which will allow us to 
identify possible presence of chaotic dynamics.

Prediction performance for an adaptive AI system using the 
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possibility of presence of a dynamical attractor [9,10]. The use of 
delay embedding as an attractor reconstruction method working 
from a time series x t  may be able to recover the main properties of 
the attractor, a point that comes from Takens’ theorem [10], delay 
embedding can also be employed as a feature space for time series 
prediction [5,9]. Using an appropriate time delay  and embedding 
dimension d in Euclidean space, the delay embedding involves 
building a sequence of d-dimensional tuples from the time series:

( )( 1) 2x ,..., , , ................................(1)t t d t t tx x x xτ τ τ− − − −=

The resulting trajectory of the phase point x t  may contain topological 
regularities, using the Euclidean topology, that can be exploited 
by machine learning algorithms to predict the target series, an 
approach that was employed in low dimensional chaotic attractors 
in sars-cov-2’s regional epidemiological data to predict with success 
the COVID-19’s new cases per million and new deaths per million 
series, both in cases where there was evidence of an attractor and 
in the Oceania case, for which a bifurcation occurred [5]. For a 
delay embedding, the delay choice should be linked to the memory 
and characteristics of the dynamics. As argued in epidemiological 
contexts, we can use incubation period data and possible quarantine 
windows, if a quarantine period is established or recommended by 
healthcare authorities and implemented by governments, in this 
case, the first day after a recommended quarantine period allows 
for the embedding to account for quarantine effects, this point was 
addressed and argued in regards to SARS-CoV-2, where the World 
Health Organization (WHO) recommended quarantine period is 
14, leading to a 15 day period lag, so that the 15 day lag is the 
number of days between the start and the end of the recommended 
14 day quarantine period [5].

Now, to obtain a phase space embedding that provides predictable 
features for a target series we can use a machine learning method 
to select the embedding dimension, this method was employed 
in low dimensional chaotic attractors in SARS-CoV-2 regional 
epidemiological data to deal with the case of Oceania, where a 
bifurcation occurred, for which no stable attractor assumptions 
associated with traditional phase space embedding selection 
methods apply [9]. In this case low dimensional chaotic attractors 
in SARS-CoV-2, we calibrated the embedding dimension from a set 
of alternative dimensions to the one that gave the best result in the 
prediction of the target series. 

This method can also be employed when the dynamics is in an 
attractor. In this case, using a nearest neighbors’ machine learning 
algorithm, either a radius learner or a k-nearest neighbors’ learner, 
we can build a prospective prediction AI system that uses the 
topological regularities in the embedded trajectory to predict 
the target series. We can then select, from a set of alternative 
embedding dimensions, the one that leads to the best prediction 
performance. In this way, we make sure that we have an embedding 
that captures the most of the predictable topological structure of 
an attractor, when an attractor is present, allowing us to further 
study the topological properties of the attractor using topological 
data analysis methods, a point that, as shown in low dimensional 
chaotic attractors in SARS-CoV-2’s regional epidemiological data 
also applies to the cases where dynamical changes are present, for 
which the embedding that leads to the highest results in prediction 
can be used as a base embedding to study the topological changes 
that occurred.

The adaptive AI technology that we use is based on a sliding 
window prospective machine learning model which, as stated, has 

been successfully applied in epidemiological prediction including 
SARS-CoV-2 [11]. Since we will be using topological data analysis 
based on the Euclidean distance matrix, we use a Euclidean radius 
learner for the AI’s adaptive processing, employing Python’s 
machine learning’s library’s scikit-learn’s radius learner.

In the case of the series studied in the present article, there are 
no identifiable bifurcations, so this method is able to find an 
embedding dimension, from a set of dimensions, that provides for 
the best prediction results, so that, when we apply the topological 
data analysis, we are applying it to the embedding that leads to 
the highest exploitable topological information for the target 
series prediction, and, in this way, we are not only assured that we 
have the embedding dimension that leads to the highest amount 
of topological information from the studied set of alternative 
embeddings, we can also link the topological analysis directly to the 
predictability of the target series, which from an epidemiological 
and healthcare management standpoint is a key advantage.

Following the approach addressed above and also employed in 
low dimensional chaotic attractors in SARS-CoV-2’s regional 
epidemiological data, we perform different embeddings and, for 
each embedding dimension d, we use an Euclidean radius-based 
learner with a sliding learning window of size w , to perform the 
single period prediction:
^

1 (x )...........................(2)t w tx f+ =

Using as training data the sliding window feature set { }1 1x , ... , xt w t− − −  
and sliding window target{ },...,t w tx x− . We employ sciki-learn’s radius 
neighbor regressor using the Euclidean metric, in order to test 
within a set of dimensions d

0
, d

1
,…,d

N
 which embedded dynamics 

leads to the best prediction performance of the target series. In this 
case, we use the R2 score as a metric for selecting the dimension, 
this dimension leads to the embedding for which a radius learner is 
able to extract the most information from the topological structure 
of the embedded trajectory to predict the target series, having 
obtained such an embedding, we apply Rosenstein et al. method 
for the estimation of the largest Lyapunov exponent, a positive 
largest Lyapunov exponent being a marker of chaotic dynamics [5]. 

A positive largest Lyapunov exponent indicates the presence 
of sensitive dependence upon initial conditions, in the case of 
stochastic chaos with a low dimensional attractor, the higher the 
value of this exponent is, the more sensitive is the dynamics to small 
noise fluctuations and the lower is the prediction horizon [5,6]. In 
the case of SARS-CoV-2, in low dimensional chaotic attractors in 
sars-cov-2’s regional epidemiological data we found that the new 
cases per million series and the new deaths per million series, for 
the regional data where an attractor emerged, were characterized 
by low values of the largest Lyapunov exponents, consistent with a 
dynamics close to the onset of chaos.

Low values of the largest Lyapunov exponents, coupled with color 
chaos signatures with long range persistent dynamics leads to a 
strong long-range predictability that can be exploited by forward 
looking adaptive AI algorithms, such as the one we use here, 
taking advantage of the recurrence structures associated with 
these attractors [5]. Furthermore, color chaos dynamics close to 
bifurcation points near periodic windows (onset of chaos) have 
recurrence signatures associated with a close proximity of cycles 
that make these dynamics more predictable in the long range, 
which leads us to the next point which is the test of the prediction 
performance on multiple prediction horizons, an analysis which is 
of relevance for healthcare management since it addresses how A.I. 
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solutions can be deployed for early warning systems on healthcare 
resource usage, also, from an epidemiological standpoint, it 
provides for relevant insights since a high long term predictability, 
in the case of hospitalization data, provides information on the 
virus’ infectiousness patterns.

Prediction performance for multiple prediction horizons

We begin by analyzing the prediction performance of the forward 
looking adaptive A.I. system, reviewed above, on a one-day ahead 
prediction horizon, reporting the following as main metrics [5]:

The linear correlation between the AI predictions and the target 
signal, which allows us to evaluate how much the AI predictions 
match the fluctuations in the target variable, a score that should 
be positive and high for a well performing prediction technology;

The root mean squared error divided by the total data amplitude, 
which provides for a relative error measure and thus gives a relative 
scale on error;

The explained variance score, which is one of the main metrics 
providing for the degree to which the variability in the target is 
explained by the AI’s predictions;

The coefficient of determination (R2) score, which is similar to 
the explained variance score, but accounts for systematic offsets in 
prediction, in this way, being preferred to the explained variance 
score.

The above metrics, when calculated for an adaptive AI system, with 
a sliding window radius learning unit, can be used to characterize 
the degree to which the topological structure of the attractor, 
in terms of recurrences, can be exploited to predict the target 
variable, providing for a more detailed picture of the prediction 
performance, in this way, it can also be employed to evaluate the 
level of regularities in the recurrence structure of the reconstructed 
attractor that contains information on the next period value of the 
target series.

Going beyond the one-day ahead prediction horizon, we calculate 
the R2 score on multiple prediction horizons where the AI, instead 
of being tasked to learn to predict the target one day ahead, is tasked 
with predicting the target several days ahead, using the embedded 
trajectory [5]. 

From an healthcare standpoint, when dealing with hospital 
occupancy from COVID-19 as target of interest, a multiple periods 
ahead prediction is a key analysis, since, if the performance is good, 
we can use the reconstructed attractor to predict hospitalizations 
several days/weeks ahead offering for a foresight that can be used 
by hospital management for planning, it also offers a country’s 
healthcare authorities a foresight into possible hospital resources’ 
pressure that can guide healthcare planning and response, finally, 
from an epidemiological standpoint, it offers insight into how 
the virus is behaving in terms of morbidity, offering insights into 
patterns associated with topological regularities that occur in 
the dynamics of a possible chaotic attractor associated with the 
hospitalizations themselves.

Topological data analysis 

The topological data analysis methods complement the previous 
analyses. The first analysis that we perform is based on k-nearest 
neighbors, in this case, we test, first, a similar AI for the one-day 
ahead prediction to that of the previous subsection but replacing 

the radius learner by a k-nearest neighbors’ learner, evaluating, 
for different values of k and a sliding learning window, the value 
of the R2 score, this serves a double purpose, one is to assess the 
degree to which the k-nearest neighbors of an embedded trajectory 
contain information that may help such an adaptive forward 
looking AI system to predict the future value of the target series, 
the second purpose is to select the best value of k to analyze the 
k-nearest neighbors’ graph N for the reconstructed attractor, this 
method was successfully employed in low dimensional chaotic 
attractors in sars-cov-2’s regional epidemiological data to analyze 
the reconstructed attractors for the regional series of the number 
of new positive cases per million and the number of new deaths per 
million from COVID-19.

The k-nearest neighbors’ graph N is an undirected graph with 
the vertices corresponding to each phase point and the edges 
corresponding to the k nearest neighbors. From the graph N, one 
can extract the set of degree values J , and the degree distribution, 
calculating the relative frequencies jp  associated with each degree 
value j J∈ , from this distribution, the degree (relative) entropy can 
be calculated as [5]:

2

2

log
(G) ....................(3)

log #

j J j j

deg

p p
H

J

∈

= −
∑

This relative entropy measure has a value between 0 and 1, in the 
special case of a graph where the relative frequencies associated 
with each degree coincide 1/ #jp J= , (G) 1degH = , which is the maximum 
entropy value, in the case of a graph where each node has the same 
degree we get (G) 0degH = , which is the lowest entropy value. The closer 
to 1 this degree entropy measure is, the closer the graph is to a 
maximum degree entropy.

The Kolmogorov-Sinai (K-S) entropy is the second graph entropy 
measure that we calculate for the k-nearest neighbors’ graph, this 
entropy measure is an information measure for a Markov process 
with a transition matrix extracted from the graph. For an un 
weighted graph, which is our case, this entropy coincides with the 
logarithm of the dominant eigenvalue of the transition matrix µ +
, expressing it in bits, leads to the following information measure 
[12]:

2(G) log ..............................(4)KSH µ= +

The last topological data analysis method that we employ is persistent 
homology worked from the Euclidean distance matrix S, calculated 
on the embedded series, which includes all the Euclidean distances 
between the embedded points in d-dimensional Euclidean space, 
allowing one to find relevant topological features in the embedded 
trajectory and analyze how the homology changes over a Vietoris-
Rips filtration calculated on the embedded series [5]. In this case we 
look at the 0, 1 and 2-homology classes. The 0-homology class (H

0
) 

corresponds to components connected by a line, therefore having a 
zero dimensional boundary, a 1-homology class (H

1
) corresponds to 

a loop, finally the 2-homology class (H
2
), correspond to voids, that 

is, simplexes with faces but no interior [13,14].

Persistent homology, can be used to count the number of structures 
in each simplicial complex in a Vietoris-Rips filtration for each 
homology dimension, including the birth and death of homology 
classes as the radius is increased. The homology classes’ birth and 
death can be calculated in the following way, given a filtration of 
simplicial complexes 1 2

...r rC C⊆ ⊆ we get a sequence of maps for the 
homology dimension S, 1 2

( ) ( ) ...s r s rH C H C→ → , a homology class is born 
at n if it is in ( )

ns rH C  but not in the image of the map 1
( ) ( )

n ns r s rH C H C
−

→  
and dies at m if it is in ( )

ms rH C  but not in 1
( )

ms rH C
+  [13].
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Persistent structures (long lived classes) are large scale structures 
in the embedded trajectory, if that trajectory is in an attractor, 
they correspond to large scale structures of the attractor, structures 
with lower persistence may be indicative of the presence of noise 
or of a stronger chaotic dynamics [5]. A persistence diagram D can 
be calculated for different homology dimensions with each point 
for each dimension giving the lifetime for a structure, in this case, 
following the methodology employed inregional epidemiological 
data, we define sD as the persistence sub-diagram for the homology 
dimension s, each point in the sub-diagram corresponds to an 
ordered pair of birth and death times in the filtration.

The lifetime or persistence of a class at dimension s, thus, 
corresponds to the difference between the death and birth times, 
therefore, given a dimension s and the ordered pairs of the sub-
diagram ,( )B D sn n D∈ , where Bn is the “filtration birth time” and Dn is the 
“filtration death time”, with the death happening after birth, we 
can calculate the persistence metric as [5,13]: 

( ) ...............................(5)D Bpers p n n= −

Structures that live through the full filtration have = ∞and, 
therefore, we get ( )pers p = ∞ . Now, to better characterize the attractor’s 
topology we apply the same methodology applied low dimensional 
chaotic attractors in sars-cov-2’s regional epidemiological data and 
calculate the following metrics for each homology dimension (that 
is, for each sub-diagram sD ): 

The number of classes with ( )pers p < ∞ , which allows us to identify 
which dimension is predominant in terms of number of homology 
classes with lifetimes shorter than ∞;

The number of classes with ( )pers p = ∞ , which allows us to identify the 
homology dimensions that have structures that persist throughout 
the whole filtration, constituting very large scale structures;

The maximum persistence which allows us to characterize which 
dimensions have the most persistent structures;

The mean persistence: this metric allows us to characterize each 
homology dimension in terms of its mean persistence.

With these metrics calculated for the different sub-diagrams we 
get a picture of an attractor’s structure at multiple dimensions 
and the dominant features, an approach that was applied regional 
epidemiological data.

A final analysis that we perform is again to calculate the average 
recurrence strength and the conditional probability of 100% 
recurrence but on the Euclidean distance matrix calculated for 
the embedded series in d-dimensional Euclidean space, the same 
matrix used for the persistent homology analysis. 

RESULTS 

In Figure 1 we show the USA and Canada’s hospital occupancy 
numbers from COVID-19, for the periods from 2020-07-15 to 
2022-09-30 and from 2020-03-09 to 2022-09-30, respectively. 

In Figure 2, we show the power spectrum for both countries, 
in both cases we find the presence of a power law decay in the 
spectrum with an estimated exponent of 4.469975 for the USA, 
with an associated p-value of 3.573819e-29 and an R2 of 0.895767, 
which implies a strongly persistent spectrum, for Canada the 
spectrum is also strongly persistent but slightly less than the USA, 
with an estimated exponent of 3.866758, with an associated p-value 
of 4.076911e-24 and R2 of 0.842180. There is a slight rise with a 

peak at the high frequency window for both countries, which is 
indicative of a high frequency signal, this can happen in chaotic 
attractors near the onset of chaos, where the dynamics is near 
a periodic window, which can lead to high frequency markers 
[5], such a dynamics was found to occur for North America’s 
COVID-19 new daily positive cases per million and new daily 
deaths per million in low dimensional chaotic attractors in sars-cov-
2’s regional epidemiological data which may also explain the daily 
hospital occupancies from COVID-19’s high frequency markers 
(Figures 1 and 2).

The strong persistence of the signal, and the high frequency 
signatures indicate that there may be a recurrence structure that 
is strong enough for an adaptive A.I. system to predict the series, 
using an appropriate phase space embedding.

In Table 1, we show the average recurrence strengths for different 
radii in units of standard deviation. We find that the USA has, 
predominantly, a higher average recurrence strength than Canada, 
which is also consistent with the higher persistence found in the 
power law decay in the spectral analysis. With increasing radius, 
the two countries’ average recurrence strengths converge. The 
conditional 100% recurrence probability for the USA is also higher 
than that of Canada, remaining so with increasing radii, as shown 
in Table 2, which reinforces the above results (Tables 1 and 2).
Table 1: Average recurrence strengths with increasing radii in units of 
standard deviation for the original series.

Radius USA Canada

1 0.653486 0.470163

1.5 0.754103 0.65644

Figure 1: Daily hospital occupancy from COVID-19 in USA (left), from 
2020-07-15 to 2022-09-30, and Canada (right), from 2020-03-09 to 2022-
09-30.

Figure 2:  Power spectra for the daily hospital occupancy from COVID-19 
series for the USA (left) and Canada (right).
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In the case of the USA, we find that the highest R2 (around 96.51%) 
holds for a nine dimensional embedding, while for Canada the 
highest R2 (around 95.34%) holds for a six dimensional embedding. 
For these embedding dimensions, the correlation between the 
adaptive learner’s predictions and the target series is of 0.982547 for 
the USA and 0.976568 for Canada, while the RMSE divided by the 
respective series amplitudes are 4.672% for the USA and 4.424% 
for Canada, also, the explained variance scores are of 96.522% 
for the USA and 95.338% for Canada, which shows, for these 
respective embedding dimensions, that the artificial adaptive agent  
has  a very  high prediction performance  with respect  to  the  daily 
hospital occupancies  from COVID-19, in both the USA and Canada
Using these embedding dimensions, 9 for the USA and 6 for Canada, 
we find that the corresponding estimated largest Lyapunov exponents 
are both positive, which is a signature of chaos associated with the 
daily number of hospital occupancies from COVID-19, in this case, 
given the spectral signatures we find that we may be dealing with 
color chaos, however, for the hospital occupancy series, while both 
countries show evidence of chaos, the estimated value of the largest 
Lyapunov exponent is smaller for the USA than for Canada, which 
means that the USA dynamics may be closer to the onset of chaos 
than that of Canada (Table 4). 
Table 4: Largest Lyapunov exponents estimated for the USA and 
Canada’s embedded series.

 dE L1

USA 9 0.00773

Canada 6 0.01447

In this way, the evidence is favorable, for both countries, to a 
hypothesis of a chaotic dynamics with a high degree of predictability 
by an adaptive A.I. system that uses the embedded series’ recurrences 
to predict the daily number of hospital occupancy from COVID-19, 
the associated dynamics is consistent with a form of stochastic 
chaos characterized by a power law decay in the power spectrum 
(color chaos), with high frequency periodic signatures and low 
values of Lyapunov exponents consistent with the chaotic dynamics 
being close to the onset of chaos, with the USA being characterized 
by a higher dimensional structure than that of Canada, stronger 
recurrences, higher predictability and a Lyapunov exponent that is 
closer to zero, indicating that the USA’s possible chaotic attractor 
may be closer to the onset of chaos.

Considering now, the change in predictability with the sliding 
learning window, we find that the R2 values for the radius learner 
decrease with the window size, in this way the sliding 7-day learning 
window (one week) for the adaptive AI system leads to the best 
performance (Table 5), which means that the one week learning 
window should be preferred. Similar results were obtain in [5], with 
the one week learning window also leading to a better performance 
for COVID-19’s new cases and new deaths per million (Table 5).
Table 5: R2 scores for the radius adaptive learner, using a radius of 4 s.d., 
with increasing window sizes.

Window USA Canada

7 0.9651 0.95338

8 0.958129 0.945731

9 0.950557 0.9374

10 0.942484 0.928642

2 0.840627 0.818387

2.5 0.909904 0.921389

3 0.961158 0.956449

3.5 0.989799 0.97304

4 0.998442 0.985131

Table 2: Conditional 100% recurrence probability calculated for different 
radii with increasing radius in units of standard deviation.

Radius USA Canada

1 0.151177 0.00107

1.5 0.166047 0.002139

2 0.187113 0.035294

2.5 0.288724 0.165775

3 0.394052 0.223529

3.5 0.583643 0.344385

4 0.863693 0.473797

In this last case, it is noticeable that the USA has a significantly 
higher value than Canada which is indicative of a closer proximity 
to a periodic or quasiperiodic skeleton associated with a periodic 
or quasiperiodic window, that leaves something like a ghost trail in 
the chaotic dynamics, another indicator favorable to the hypothesis 
that the USA dynamics may be closer to the onset of chaos.

Considering the predictability of the dynamics, using delay 
embedding, with a 15 period lag and a 7-days sliding learning 
window, as shown in Table 3, for embeddings varying from 2 to 10 
and a radius learner, we find that all the embeddings lead to a high 
value of R2 (higher than 90%), which means that the recurrences 
contain sufficient information for a high predictability of the 
hospital occupancies from COVID-19, using a radius learner, in 
all applications of machine learning, in the present work, we use a 
brute force algorithm and an Euclidean metric (Table 3). 
Table 3: R2 scores for the radius adaptive learner, using 7-days sliding 
learning window and a radius of 4 s.d., with increasing embedding 
dimensions.

dE USA Canada

2 0.96444 0.952165

3 0.964498 0.952816

4 0.964381 0.953132

5 0.964055 0.953183

6 0.963702 0.953381

7 0.963603 0.95337

8 0.963853 0.952805

9 0.965104 0.951742

10 0.965092 0.950427



7

Gonçalves CP

Int J Swarm Evol Comput, Vol. 12 Iss. 01 No: 1000291

6 0.971384 0.960017

The higher prediction performance for the USA than for Canada 
can be further accounted for by employing the k-nearest neighbors’ 
topological analysis. In Figure 4, we show the k-nearest neighbors’ 
graphs, for k=2, for both countries and the respective degree 
distribution. We find some differences between the two graphs, 
while, as shown in Table 7, both graphs exhibit low degree entropy 
values, the graph for the USA has a lower degree entropy than the 
graph for Canada, the same is true of the K-S entropy which is 
lower for the USA than for Canada, furthermore, the k-nearest 
neighbors’ graph for the USA is not scale free (power law scaling), 
while Canada’s graph shows a region of power law scaling in the 
degree distribution, which implies the possible presence of a scale 
free graph in the neighborhood structure (Figure 4 and Table 7).

Table 7: Main entropy values for figure 4’s k-NN graphs.

 USA Canada

Degree distribution entropy 0.047259 0.123603

K-S Entropy 1.479485 1.781877

The lower entropy values of the graph structure and the non-power 
law decay for the USA’s degree values may be indicative of a lower 
complexity of the USA’s nearest neighbors structure and that the 
USA’s attractor is closer to a bifurcation point from a periodic 
window to a chaotic dynamics, which is consistent with the 
previous result from the largest Lyapunov exponent that shows that 
the USA has an estimated exponent closer to zero than Canada. 
In this way, the evidence is favorable to the USA’s daily hospital 
occupancy from COVID-19’s attractor being closer to the onset of 
chaos than Canada’s. Thus, even though the evidence is favorable 
for the USA’s attractor having a higher dimensionality, the evidence also 
supports the hypothesis that this attractor is closer to the onset of chaos.

Considering now the persistent homology analysis, we show in 
Figure 5 the distance matrices and respective persistence homology 

11 0.933947 0.919588

12 0.924948 0.910263

13 0.915447 0.900572

14 0.905456 0.890304

15 0.894992 0.879485

Going beyond the one-day ahead prediction, we find that the 
Euclidean recurrence structure contains sufficient information to 
allow the adaptive AI, equipped with a radius neighbor machine 
learning module, to predict the future hospital occupancies from 
COVID-19 for longer horizons, as shown in Figure 3. 

Indeed, counting the weeks in terms of 7-day periods, we find 
that up to two weeks ahead (14 days) the adaptive AI’s prediction 
performance, measured in terms of the R2, does not drop with 
respect to the single day prediction horizon, only after 14 days do 
we see a break in prediction performance, however, that break is 
not significant, indeed, up to 6 weeks ahead (42 days) we find that 
the prediction performance for the USA hospital occupancy from 
COVID-19 does not drop below 96%, and for Canada it does not 
drop below 95%. These values show that the recurrence structures 
for the reconstructed attractors allows for the development of AI 
systems that exploit them in a way that can be deployed by healthcare 
management authorities to predict the future hospital occupancies 
and take appropriate measures. Again, as in the previous analysis, 
the USA series has a higher predictability than Canada.

Considering, now, the AI equipped with the k-nearest neighbors’ 
algorithm, we find that the performance is higher than that of 
the radius neighbors’ learner and that it decreases with increasing 
k (Table 6), with the best performance obtained for k=2 nearest 
neighbors, we will thus use this value in the k-nearest neighbors’ 
topological analysis. Once more, the performance for the USA is 
higher than for Canada (Table 6). 
Table 6: R2 scores of the k-NN adaptive A.I. for the USA and Canada’s 
daily hospital occupancies from COVID-19 embedded series, using a 
7-days sliding learning window.

k USA Canada

2 0.989918 0.978189

3 0.986178 0.974072

4 0.98187 0.969883

5 0.976961 0.965221

Figure 4: k-nearest neighbors’ graphs and respective degree distribution 
for the USA (left) and Canada (right).

Figure 3:

●) USA, (●) Canada. 

 R2 scores for prediction windows 1, 7, 14, 21, 28, 35 and 42 
days ahead, using a 7-days sliding learning window.

(Note:
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At the mean persistence level, we find the biggest difference between 
the two attractors, indeed, the USA has homology dimension 1 as 
the predominant in terms of persistence structures, which means 
that loops are larger scale structures for its attractor, indicating, 
again, a possible closer proximity to a periodic window. 

For Canada, homology dimensions 0 and 1 are close to each other 
in terms of mean persistence, but homology dimension 0 has a 
higher value in terms of mean persistence (Table 10).
Table 10: Recurrence metrics using a radius of 4 s.d., for the USA and 
Canada’s embedded series.

 USA Canada

Recurrence probability 94.76% 98.02%

Average recurrence strength 0.489841 0.676945

P[100% recurrence|recurrence] 15.51% 9.96%

To complement this analysis, considering a radius of 4 s.d., we find 
that both countries have a high recurrence probability (Table 10), 
however, the embedded series for Canada has a higher recurrence 
probability than for the USA, it also has a higher average recurrence 
strength, however, the USA has a higher probability of finding 
100% recurrence diagonal lines in lines with recurrence (15.5146% 
probability for the USA, against 9.9644% probability for Canada), 
which again reinforces the hypothesis of a closer proximity of 
the USA to a periodic window, leaving a stronger marker in the 
probability of finding 100% recurrence lines, conditional on these 
lines being lines with recurrence.

DISCUSSION AND CONCLUSION

We applied chaos theory and topological data analysis methods 
combining AI with k-nearest neighbors, persistent homology and 
recurrence analysis to USA and Canada’s daily hospital occupancies 
from COVID-19. The results show that there is evidence of the 
emergence of a low dimensional attractor for both countries with 
the best fit in AI target prediction being obtained, in the case of the 
USA, for a 9 dimensional embedding and in the case of Canada 
for a 6 dimensional embedding, out of a tested range of dimensions 
up to 10.

In both cases, we find that the largest Lyapunov exponent estimated 
for the reconstructed attractor is positive, which is an indicator of 
a chaotic dynamics at the level of the daily hospital occupancies 
from COVID-19. Furthermore, despite the lower dimensionality, 
Canada’s attractor exhibits a higher Lyapunov exponent and is less 
predictable than the USA attractor, even though both attractors’ 
recurrences can be exploited for a long-range predictability by 
an adaptive forward looking AI, which means that healthcare 
authorities can implement AI solutions using delay embedding 
to predict hospital occupancies from COVID-19 and plan for 
healthcare responses. Of notice, we found that adaptive AI systems 
that exploit the reconstructed attractor recurrences employing 
epochal learning via a sliding learning window can predict the 
hospitalization numbers for both countries with more than 95% 
R2 score up to 42 days ahead, which means that the attractor 
reconstruction coupled with such machine learning solutions allow 
the implementation of early warning systems for hospital resource 
utilization associated with hospital occupancies from COVID-19.

We traced down this predictability to the respective attractors’ 
topological structures. Our analysis supports the hypothesis of 

diagrams, the distance matrices are in color code, where the lighter 
colors correspond to the smaller distances and the darker colors to 
larger distances (Figure 5).

There is an immediately visible difference between the two 
countries, the homology dimensions 1 and 2 are born much 
sooner in the filtration for Canada than for the USA, however, the 
similarities and differences between the two countries, with respect 
to the persistence diagrams, become more visible when we consider 
the persistence metrics extracted from the respective diagrams, as 
shown in Tables 8 and 9. With respect to the number of classes, 
we already find a difference between the two countries, indeed, 
while both countries have a predominance of classes of homology 
dimension 0, followed by homology dimension 1 and, finally 2, 
as the more residual dimension, Canada’s attractor has a higher 
number of classes than the USA attractor, also, for homology 
dimension 2, Canada’s attractor has 6 classes while the USA only 
has 2 classes. Both countries have one infinity class that holds for 
homology dimension 0, and the maximum persistence, that is 
not an infinity class, is obtained in both countries for homology 
dimension 1, which indicates that there is a presence of loops in 
the attractor’s larger scale topological structure (Tables 8 and 9).

Table 8: Persistence metrics for the USA attractor.

 H0 H1 H2

Number of classes 688 44 2

Maximum persistence 11,115.62 78,518.19 294.5

Mean persistence 4,356.41 5,342.62 161.621

Table 9: Persistence metrics for the Canada attractor.

 H0 H1 H2

Number of classes 861 80 6

Maximum persistence 1,182.68 5,365.72 186.55

Mean persistence 268.919 225.058 48.509

Figure 5: Distance matrices (top) and respective persistence diagrams 
(bottom) obtained from the embedded series for the USA (left) and 
Canada (right).
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a form of noisy power law (color) chaos in both the USA and 
Canada’s daily hospital occupancies from COVID-19, but with the 
USA being closer to the onset of chaos than Canada, this shows 
up in the topological data analysis, spectral analysis, Lyapunov 
exponents, recurrence metrics (at the level of the conditional 100% 
recurrence probability) and persistent homology analysis.

Canada’s attractor is more chaotic than the USA, so that, while 
still having strong recurrences that can be exploited for prediction, 
the adaptive AI system shows consistently lower performance, the 
Lyapunov exponent is higher, the power law decay in the frequency 
spectrum of the signal is faster and the k-nearest neighbors graph 
shows a scale free degree distribution, which the USA attractor 
does not.

The current findings are convergent with our previous work on the 
regional data for the COVID-19 number of new cases per million 
and new deaths per million, which showed the presence in North 
America of chaotic attractor structures close to the onset of chaos, 
even though the decay in the frequency spectra was faster than the 
power law.

The methods we employed here are scalable for other countries and 
are also adaptable in setting embedding parameters for cases where 
bifurcations take place, as shown for the case of Oceania’s new 
cases per million and new deaths per million series. The methods 
can also be employed for other diseases.
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