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ABSTRACT

Background: Recent studies applying chaos theory methods have found the existence of chaotic markers in SARS-
CoV-2’s epidemiological data, evidence that has implications on the prediction, modeling and epidemiological 
analysis of the SARS-CoV-2/COVID-19 pandemic with implications for healthcare management.

Aim and methods: We study the aggregate data for the new cases per million and the new deaths per million from 
COVID-19 in Africa, Asia, Europe, North and South America and Oceania, applying chaos theory’s empirical 
methods including embedding dimension estimation, Lyapunov spectra estimation, spectral analysis and state-of-
the-art topological data analysis methods combining persistent homology, recurrence analysis and machine learning 
with the aim of characterizing the nature of the dynamics and its predictability.

Results and conclusion: The results show that for all regions except Oceania there is evidence of low dimensional 
noisy chaotic attractors that are near the onset of chaos, with a recurrence structure that can be used by adaptive 
artificial intelligence solutions equipped with nearest neighbors’ machine learning modules to predict with a very 
high performance the future values of the two target series for each region. The persistent homology analysis uncovers 
a division into two groups, the first group comprised of Africa and Asia and the second of Europe, North and South 
America. For Oceania, we found evidence of the occurrence of a bifurcation which we characterize in detail applying 
a combination of machine learning and topological analysis methods; we find that the bifurcation in the region is 
related to the emergence of new variants.

Keywords: SARS-CoV-2; Chaos theory; Recurrence analysis; Persistent homology; Ordinal partition graphs; 
Machine learning; Adaptive AI; Epidemiology

INTRODUCTION

A virus contagion dynamics among human populations 
depends upon biological factors such as, among others, the virus 
characteristics, including incubation period, first time for symptoms 
to appear, the type of symptoms, the number of asymptomatic 
cases, morbidity, mortality, the mutation rates for the emergence 
of new variants, as well as the infected population and transmission 
vectors, on the other hand, there are also other factors that include 
a country’s population’s behavior and the measures put in place 
for healthcare response, quarantine, treatment, drugs, vaccination 
policies and, even, healthcare communication and public education 
on the virus and healthcare risks associated with it. 

In this sense, since human societies respond to viruses and associated 
diseases with adaptive measures, there is a complex adaptive 
dynamics of human societies in response to virus contagion and 

outbreaks, response that, in turn, influences the viral propagation 
dynamics and the occurrence and pattern of outbreak waves, with 
possible complex attractors emerging from this dynamics. The 
nature and structure of these attractors may offer a basis for viral 
contagion and outbreak waves’ prediction and characterization 
using techniques coming from chaos theory, with possible value 
and insights for healthcare authorities, viral outbreak containment 
policies including possible quarantines, vaccination policies and 
healthcare resources planning.

Recent research into the Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) has uncovered evidence of low 
dimensional attractors and markers of chaos in the pandemics’ 
dynamics for different countries and regions [1-4]. Taking into 
account this evidence, in the current work, we apply chaos theory’s 
main empirical methods including both chaos metrics such as 
embedding dimension and Lyapunov spectra estimation along 
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section 2 to the dataset.

• In section 4, we provide for a conclusion and final reflections 
of the work’s implications for epidemiological research into 
the SARS-CoV-2’s pandemic and healthcare policies.

MAIN CONCEPTS AND METHODS

Deterministic and stochastic chaos

Deterministic chaos can be defined as a bounded aperiodic 
dynamics with sensitive dependence upon initial conditions that 
exhibits a dynamical sequence that is random-looking with spectral 
signatures that are akin to a stochastic process, in this sense, 
deterministic chaos is often considered as a form of endogenous 
(pseudo)random dynamics in a deterministic system without any 
noise term, this type of chaos is closed in the sense that there is no 
external environment leading to external random noise [5-9]. 

In nature, especially when dealing with complex systems which are 
open and interact nonlinearly with an environment, we never have 
a fully closed deterministic process, noise is always present, and 
this leads to stochastic chaos, which is an open chaos dynamics. 
Within a purely mathematical setting, when it comes to random-
like signals, for the purpose of systematization, there are three 
major dynamical processes [10-12] deterministic chaos, stochastic 
processes without a nonlinear chaotic component and stochastic 
chaos, which involves characteristics of the first two. An example 
of the last type is a system of nonlinear dynamical equations (in 
discrete time or in continuous time) that have a noise coupling.

The main problem with stochastic chaos is that noise is integrated 
into the dynamics and contributes to it. The range of such a 
dynamics is very wide, one can have noise-induced chaos, an 
example of which is the destruction of periodic windows through 
noise, in a nonlinear dynamical system, and one can also have 
high dimensional or low dimensional attractors depending on the 
relation between the “external” stochastic component (the noise) 
and the “internal” nonlinear dynamical component.

The type of noise coupling as well as the nature of noise also matters. 
Indeed, while we can have, for instance, a system of deterministic 
nonlinear dynamical equations that lead to a power spectrum 
equivalent to a white noise spectrum, we can also have deterministic 
chaotic systems that produce complex fractal and even multifractal 
signatures with power law decay in the power spectrum, if a such 
a deterministic chaotic dynamical system is coupled with a fractal 
or multifractal noise process, then the final fractal or multifractal 
signatures result from a complex interaction between the nonlinear 
dynamics and the complex noise process. Likewise, while high 
frequency white noise processes may be present, a deterministic 
chaotic dynamics with a power law decay in the power spectrum, 
which corresponds to 1/fβ chaos when coupled to a white noise 
process can lead to a 1/fβ noise signature with a high frequency 
breakdown, we see examples of this in financial market modeling 
in and it corresponds to the concept of power law chaos.

Power law chaos, also called color chaos, is relevant since it 
produces long range dependences, and, in the case of β>2, it 
leads to the so-called black noise-like spectra, which are persistent 
processes that characterize different natural disasters [13,14]. In 
the epidemiological context, a black (stochastic) chaos dynamics, 
that is, (stochastic) chaos that produces signals with black noise 
spectra leads to persistent processes that can be characterized by 
long periods of low cases and then persistent large outbreak waves.

with spectral analysis and expand on these empirical methods 
by employing state-of-the-art topological data analysis methods 
including: recurrence analysis metrics, persistent homology analysis, 
predictability metrics from nearest neighbors’ machine learning 
algorithms incorporated into adaptive Artificial Intelligences 
(AI), k-nearest neighbors graph analyses and ordinal partition 
graph analyses. These analyses allow us to provide a detailed 
characterization of the SARS-CoV-2’s dynamics per region. In 
terms of major findings, we uncovered the following key findings:

• Africa, Asia, Europe, North and South America show strong 
evidence of an emergent low dimensional noisy chaotic 
attractor that is near the onset of chaos with a black power law 
noise-like spectrum (color chaos) and a strongly predictable 
dynamics with a recurrence structure that can be used by 
forward looking adaptive AI solutions that can be employed to 
predict the future viral outbreaks.

• The topological data analysis techniques also uncover both 
common patterns to the regions as well as some level of 
diversity between regions, the persistent homology method, 
in particular, uncovers a division in two groups in terms of 
persistent of homology classes, the two groups are divided as 
follows: Africa and Asia on one group and Europe, North and 
South America on another group.

• Oceania shows evidence of a bifurcation with an increase 
in epidemiological risk that we characterize using machine 
learning tools and k-nearest neighbors graph analysis along 
with ordinal partition graph analysis.

The dataset that we use is the Our World in Data SARS-CoV-2 
data, for the time period that goes from the earliest available data 
up to 2022-08-07, which was the last day available at the time of the 
analysis. The available dataset thus covers the following periods for 
each region:

• Africa: 2020-02-13 to 2022-08-07

• Asia: 2020-01-22 to 2022-08-07

• Europe: 2020-01-23 to 2022-08-07

• North America: 2020-01-22 to 2022-08-07

• South America: 2020-02-22 to 2022-08-07

• Oceania: 2020-01-25 to 2022-08-07

The advantage of a regional division, while providing aggregate 
data, is that it produces a pattern that captures the general dynamics 
in the corresponding region in terms of general outbreak dynamics, 
while compensating for specific countries’ undercounting of cases, 
a major problem in the case of SARS-CoV-2 which limits the 
country-by-country analysis due to the need for test availability and 
the number of asymptomatic cases, a similar issue being raised for 
the number of deaths. In this way, the regional analysis provides 
for a way to mitigate this and for a better capturing of the general 
pandemic dynamics. A second point is that, while dealing with a 
pandemic, regional analysis allows one to identify commonalities 
and differences that may characterize different regions and explain 
co-outbreaks, that is, outbreaks that occur almost simultaneously 
in different countries belonging to the same region. The work is 
organized as follows:

• In section 2, we review the main concepts and methods used 
in the current work.

• In section 3, we apply the methods and tools reviewed in 
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Empirically, stochastic chaos can be identified by the presence of 
positive maximum Lyapunov exponents in systems with dynamical 
noise, these signatures can show up either in the original signal 
or in a denoised signal. However, while the presence of these 
signatures in a noisy signal is indicative of a possible stochastic 
chaotic dynamical system, the absence of these signatures cannot 
also rule out the possibility of stochastic chaos.

This last issue is even more problematic for dimension estimations, 
indeed, we can have high dimensional chaos, a chaotic dynamics 
coupled to a high noise level, a coupling between a nonlinear 
dynamics and a complex stochastic process (for instance, fractal or 
multifractal noise), or even high dimensional chaos. By contrast, the 
emergence of a low dimensional attractor with positive Lyapunov 
exponents in a noisy dynamics is indicative of a process of self-
organization in a stochastic chaotic dynamics. In the empirical 
section we will find this to be the case for all regions except for 
Oceania, which exhibits a dynamical regime change corresponding 
to a bifurcation.

In complex adaptive dynamics such as an epidemic or a pandemic 
where human communities respond adaptively, an emergent 
chaotic process always falls into a stochastic chaos framework. The 
emergence of a low dimensional attractor, however, even in the 
presence of dynamical noise, implies the possibility of employing 
phase space reconstruction methods to predict the future dynamics 
of the series, especially in the case of black (stochastic) chaos, 
which leads to persistence patterns with recurrence structures and 
topological signatures that can be exploited by adaptive AI systems, 
exploiting topological features of the attractor in order to predict 
the future dynamics of relevant epidemiological targets.

In this case, the emergence of a low dimensional attractor, means 
that the interplay between the complex nonlinear dynamics has 
led to the emergence of a few robust small number of degrees of 
freedom that are supported by the system’s dynamics, and that may 
be linked to the adaptive dynamics themselves, leading to strong 
bottom-up and top-down connections.

Thus, for instance, in the case of a virus spreading in a country, 
when the healthcare authorities calculate macroscopic variables, 
such as the number of new infected individuals, they can adjust 
their healthcare policies to these variables’ evolution, which 
leads to a change in that evolution itself, leading to a strong co-
evolutionary dynamics between human agents’ responses, viral 
evolution and the emergent patterns themselves, in this way the 
agents are adapting to the consequences of their own behavior, 
macroscopically monitored through statistics, and this adaptation 
in turn will change the outbreak dynamics.

The emergence of low dimensional attractors, in these contexts, 
with convergent stable dimension estimates implies that a macro-
level dynamics with a small number of active degrees of freedom 
is being robustly sustained, which allows us to speak of a form of 
self-organization to a low dimensional stochastic/noisy chaotic 
attractor. In a disease spread this is an important point, since it 
implies that a structural dynamics with a specific dimensionality 
(number of degrees of freedom) has emerged and is being sustained 
in the co-evolutionary process. A type of dynamical profile that is 
researched upon, within the complexity sciences, by both synergetic 
and also in the networked chaos literature.

We will see, in the case of SARS-CoV-2, that, for the data sample 
available at the time of the analysis, all regions, except Oceania, 
are characterized by such low dimensional attractors’ emergence, 

however, the profile is not homogeneous with differences between 
regions as well as spectral and topological commonalities that may 
be linked to the virus characteristics. We also find evidence that is 
favorable to the attractors being close to a bifurcation point that 
corresponds to the onset of chaos, which opens up the possibility 
of occurrence of bifurcations, especially linked to new variants, in 
the case of Oceania we indeed find evidence of the occurrence of 
one such bifurcation, which leads to the need to employ topological 
analysis methods in conjunction with machine learning in order to 
be effectively addressed.

Phase space embedding

Phase space embedding is a method that can be used to uncover 
and reconstruct an attractor for a system’s dynamics from a time 
series. The main assumption is that the system’s dynamics may be 
described by an attractor in a Ed  dimensional phase space, with Ed

corresponding to the number of degrees of freedom. When dealing 
with complex adaptive systems, these dimensions correspond 
to emergent degrees of freedom resulting from co-evolutionary 
dynamics leading to a geometrical structure that can be described 
by an attractor in a Ed dimensional phase space, the resulting 
attractor, which may contain a deterministic nonlinear component 
and dynamical noise, will depend upon the system in question.

In general, the emergent attractor and corresponding phase 
space dimensionality are unknown, with researchers only having 
available a sample time series tx  which results from T sequential 
observations/measurements of the system in question, in this 
case, measurement noise and possible dynamical noise may be 
jointly present, however, assuming that there is an attractor in a Ed  
dimensional Euclidean phase space, the time series can be formally 
expressed as an observation function (y )t tx g= where yt is a point in 
the Ed  dimensional Euclidean phase space. If yt  is in an attractor, 
which is a dynamical invariant, then, we know that the sequence 
yt is a trajectory in the attractor, and tx results from that trajectory 
[15].

If the equations of motion for yt are known along with g, then a 
prediction of tx can be built by applying these equations, and the 
dynamical properties can also be addressed from the study of these 
equations and simulations of the system’s dynamics. However, 
when neither yt nor g are known this is no longer possible, in this 
case, delay embedding is a phase space reconstruction method 
working from the signal tx that is able to recover the main properties 
of the attractor, the method is based on Takens’ theorem, using an 
appropriate time delay τ  and embedding dimension Ed in Euclidean 
space, we can build the Ed dimensional tuples:

( )( 1) 2x ,..., , , (1)τ τ τ− − − −=
Et t d t t tx x x x

The resulting trajectory of the phase point x t can recover, under 
certain conditions, the dynamics of the underlying unknown 
attractor. The embedded trajectory can thus be used to study the 
main properties of the unknown attractor and as a feature space for 
time series prediction using machine learning techniques.

Methods for setting embedding parameters are aimed at obtaining 
an attractor reconstruction that captures the main properties of an 
underlying attractor, which means, in this case, having to choose 
values for the parameters Ed and τ .

The delay choice should be linked to the memory and 
characteristics of the dynamics. In epidemiological contexts, the 
choice of the delay should be defined in terms of the incubation 
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period and quarantine window, setting the period to the first day 
after a recommended quarantine period allows for the embedding 
to account for quarantine effects.

In this case, we use, for τ , a 15 day period, the 15 day lag is the 
number of days between the start and the end of the recommended 
14 day quarantine period. Indeed, the World Health Organization’s 
(WHO) recommended a 14 day quarantine period from a person’s 
last exposure, which leads to 15 days between the last exposure and 
an exit from quarantine [16]. While there were differences in the 
implementation of the quarantine period, the WHO recommended 
period became a policy standard and can be used as a baseline for 
delay setting, in this way, we are accounting in our delay choice for 
the quarantine effects, in an exploratory study we also found better 
results by working with the 15 period delay [17].

To choose the optimal embedding dimension, we use the lowest 
value for the false nearest neighbors [18,19]. The concept of false 
nearest neighbors is about topology and dimensionality, if the 
embedding dimension is too low with respect to the attractor’s 
dimensionality, then, one is obtaining a lower dimensional 
projection of a higher dimensional geometrical structure, in this 
case, points that are not neighbors will be projected onto a close 
neighborhood in the lower dimensional embedding, which will 
lead to problems, especially when dealing with topological data 
analysis, one of these problems is that what may seem to be noise-
like signatures are associated not with noise but with the attempt to 
embed a higher dimensional object in a lower dimensional space.

When rising the number of phase space dimensions used in 
the phase space embedding, there is a reduction of false nearest 
neighbors, that is, phase points projected onto a close neighborhood 
of each other but that in a higher dimensional space embedding are 
found not to be neighbors at all, in this way, the number of false 
nearest neighbors tends to reduce as the number of embedding 
dimensions are risen, in a fully deterministic attractor, the false 
nearest neighbors should converge to zero when the dimension 
achieves the right number of dimensions needed to embed 
the attractor, noticeably this may be higher than the attractors 
dimensionality, however, the embedding dimension needed 
for the reconstruction of the attractor and the attractor’s actual 
dimensionality are proportional, when we refer to the attractors 
dimensionality here we actually refer to the dimension needed 
to reconstruct that attractor in a Euclidean space, that is to the 
attractors reconstruction dimensionality given the time series.

When there is noise present, the false nearest neighbors’ percentage 
will not become zero but may be low, depending upon the strength 
of the deterministic component versus the noise level. In this way, 
the method is able to distinguish between low and high dimensional 
attractors and fully deterministic from stochastic dynamics.

In the case of a bifurcation, which happens for the Oceania’s series, 
we cannot, however, employ the false nearest neighbors method, 
because we are not dealing with a stable attractor, in this case, we 
need to employ a different methodology which will use machine 
learning and the topological data analysis methods addressed 
further on, this methodology is presented and discussed in section 
3 when we address the Oceania’s case.

Lyapunov exponent’s estimation

A positive largest Lyapunov exponent is an indicator of sensitive 
dependence on initial conditions and a marker of chaos. In 
the present work, we use Eckmann, et al. method for Lyapunov 

spectrum estimation, which estimates the spectrum of Lyapunov 
exponents for a multidimensional attractor. For the complete 
and detailed description of the algorithm we refer to the original 
reference [20]. 

The method allows one to set a matrix dimension Md and study the 
behavior of the exponents for increasing embedding dimensions

E Md d≥ , we can set the dimension Md  equal to our “suspected” 
dimensionality of the attractor calculated in terms of number 
of dimensions needed for the reconstruction using the false 
nearest neighbors’ algorithm. An advantage of Eckman, et al. 
method is that it is able to extract a Lyapunov spectrum for the 
set matrix dimension, with one exponent for each dimension, the 
identification of positive exponents is evidence favorable to chaos, 
namely, if we find a convergence of the Lyapunov spectrum as 
the embedding dimension increases and some of the exponents 
converge to positive values, then, this is evidence favorable to chaos.

Topological data analysis methods

Topological data analysis methods are among the most sophisticated 
and robust methods in nonlinear time series analysis, especially for 
short time series. These methods allow one to better characterize 
the dynamics and distinguish between periodic, quasiperiodic, 
chaotic and random dynamics as well as address bifurcations.

The main structure is the distance matrix S obtained for an 
embedding with entries given by the distance between any two 
points of an embedded trajectory in a Ed dimensional Euclidean 
space. This matrix has entries given by:

, || || ..............................(2)t s t sS X X= −

Different distance metrics can be used, the most common being 
the Euclidean metric, which takes advantage of the Euclidean 
metric space topology and has some advantages for the methods 
we will implement here [21]. The matrix S provides for information 
on the recurrence structure of the dynamics, becoming a relevant 
source of topological information on the attractors structure. 
Taking advantage of the Euclidean metric topology of the 
embedded trajectory, the distance matrix can be used to produce 
a neighborhood radius-dependent binary recurrence matrix; this is 
the ε-recurrence matrix Bε with entries:

{ || ||0,
, 1, || ||

B (3)
εε

ε

− >

− ≤
= t s

t s

X X

t s X X

This is a square symmetric matrix that registers the value 1 when 
two phase points do not differ by more than ε , and 0 otherwise. 
The use of the closed neighborhood structure, in the recurrence 
analysis, has the advantage of allowing us to identify fully periodic 
dynamics so that, in the case of a periodic dynamics, if the radius is 
equal to zero, all diagonals parallel to the main diagonal that differ 
from each other by the period in question will have the value of 
1 in each matrix entry, otherwise the value will be 0. In the non-
periodic case, we never get these evenly spaced full diagonals of 
radius 0. 

We will perform several analyses on the distance matrix; the first 
is the calculation of two metrics: the average recurrence strength 
and the conditional 100% recurrence probability. The average 
recurrence strength is the sum of the number of points that fall 
within a distance no greater than the radius, in each diagonal 
below the main diagonal, divided by the total number of diagonals 
below the main diagonal with recurrence; this measure evaluates 
how strong on average the recurrence is. The conditional 100% 
recurrence probability is the probability that a randomly chosen 
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diagonal line with recurrence has 100% recurrence, for the radius 
chosen. If all lines with recurrence had 100% recurrence, for the 
radius chosen, then this number would be equal to 1, the lower 
this metric is, that is, the closer to zero it is, the more interrupted 
the diagonals are, which occurs for stochastic systems and also for 
deterministic chaotic dynamics.

Chaotic dynamics, depending upon the strength of the exponential 
divergence characterized by the largest Lyapunov exponent and the 
dimensionality of the attractor, usually displays a higher recurrence 
strength and, with rising radius, it can, in general, exhibit a higher 
conditional 100% recurrence probability than stochastic processes. 
We calculate the above two metrics for different radii in order to 
characterize the topological properties of the attractor in terms of 
neighborhood structure, using radii that are multiples of the series’ 
standard deviation.

The second type of analysis that we perform is based on persistent 
homology. In this case, the distance matrix S for the phase space 
reconstructed trajectory sets up a family of transition matrices 
corresponding to the ε-recurrence matrices Bε , the resulting 
transition graphs are, thus, based on the topology induced by the 
Euclidean metric (if the Euclidean metric is used to construct 
the distance matrix S). Now, relevant topological structures 
can be extracted by working with the distance matrix to build a 
parameterized family of simplicial complexes Cε  obtained from 
the sequence of ε-recurrence matrices Bε , with 0ε ≥ , with an edge 
connecting two vertices, corresponding to phase points xt and x s , 
being included when ,B 1t s

ε = , therefore, at any given radius, different 
phase points at different times (even distant times) may be close 
in value, that is, they may be neighbors in the attractor, and, thus, 
linked by an edge in the simplicial complex. For increasing radii 

'ε ε≥ the parameterized family leads to a Vietoris-Rips filtration: 
' ...C Cε ε

⊆ ⊆  [22,23]. 

Persistent homology, as a topological data analysis tool, when 
calculated on a reconstructed attractor’s full distance matrix S, 
which includes all the Euclidean distances between the points, 
allows one to find relevant topological features in the reconstructed 
attractor and analyze how the homology changes over the filtration. 
Homology theory is a branch of algebraic topology that studies the 
connectivity properties of topological spaces. In a simplicial complex, 
we can look at different homology dimensions and corresponding 
homology class, a 0 homology class (H0) corresponds to components 
connected by a path (which leads to a zero dimensional boundary), 
a 1 homology class (H1) corresponds to a loop, voids which are 
simplexes with faces but no interior, correspond to a 2 homology 
class (H2), and so on.

Persistent homology can be used to count the number of structures 
in each simplicial complex in the filtration for each homology 
dimension, including the birth and death of homology classes as 
the radius is increased. The homology classes’ birth and death can 
be calculated in the following way, given a filtration of simplicial 
complexes 1 2

...C Cε ε⊆ ⊆ we get a sequence of maps for the homology 
dimension s, 

1 2
( ) ( ) ...s sH C H Cε ε→ → , a homology class is born at n if it is 

in ( )
nsH Cε  but not in the image of the map 1

( ) ( )
n ns sH C H Cε ε−

→  and dies 
at m if it is in ( )

msH Cε  but not in 
1

( )
msH Cε +

.

Persistent structures have “long lives” in the filtration and 
correspond to large scale structures in an attractor, structures with 
lower persistence usually appear in noisy and chaotic systems. A 
persistence diagram D can be calculated for different homology 
dimensions with each point for each dimension giving the lifetime 

for a structure, in this case, we define sD  as the persistence sub-
diagram for the homology dimension s, each point in the sub-
diagram corresponds to an ordered pair of birth and death times 
in the filtration.

The lifetime or persistence of a class at dimension s corresponds 
to the difference between the death and birth times, thus, given 
a dimension s and the ordered pairs ,( )B D sn n D∈ , where Bn  is the 
“filtration birth time” and Dn  is the “filtration death time”, with 
the death happening after birth, we can calculate the persistence as 

( ) .......................(4)D Bpers p n n= −

Structures that live through the full filtration have Dn = ∞  and, 
therefore ( )pers p = ∞ . Now, to better characterize the attractor’s 
topology we calculate the following metrics for each homology 
dimension (that is, for each sub-diagram sD ): 

• The number of classes with 

( ) = ∞pers p

: This metric allows 
us to identify which dimension is predominant in terms of 
number of homology classes with lifetimes shorter than ∞;

• The number of classes with 

( )pers p < ∞

: This metric allows 
us to identify the homology dimensions that have structures 
that persist throughout the whole filtration, constituting large 
scale structures;

• The maximum persistence: this metric allows us to characterize 
each homology dimension in terms of the maximum 
persistence, which, in turn, allows us to characterize which 
dimensions have the most persistent structures;

• The mean persistence: This metric allows us to characterize 
each homology dimension in terms of its mean persistence.

With these metrics calculated for the different sub-diagrams we get 
a picture of the attractor’s structure at multiple dimensions and the 
dominant features.

Now, as another topological data analysis method, in order to 
evaluate the degree to which the recurrence structure in the 
Euclidean distance matrix S supports a prediction of future values 
of the target series, we can use a nearest neighbor machine learning 
method to build an adaptive AI system to predict the series k steps 
ahead using the Euclidean radius to predict the next step, this is 
nearest neighbors-based regression that uses a radius to predict the 
next steps in a series. 

In the current work, we use Python’s machine learning module 
scikit-learn’s radius neighbors regressor for this task. We stress 
that the main objective of this application is not to test different 
machine learning methods in the prediction of the new cases per 
million and the new deaths per million series, but, instead, our 
aim is to evaluate the degree to which topological information 
associated with the Euclidean recurrence structure contained in 
the matrix S can be used to predict the target epidemiological 
series, this explains the choice of machine learning architecture 
which must be one that uses the Euclidean radius to predict the 
target series, therefore, the employment of the machine learning 
here is as an added topological data analysis method. 

Given a phase space embedding, we can apply a radius neighbors-
based regression using the embedding of a past trajectory as 
a dynamical feature space, and perform the regression over a 
learning sliding window of a reconstructed orbit { }1 1x , ... , x− − −t w t  and 
the sequence of observed signals { },...,− + +t w k t kx x , for k=1,2,…, 
used as training data so that the AI learns the window-dependent 
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associated with each degree coincide 1/ #jp J= , we get the maximum 
entropy, with 2(G) log #degH J= , in the case of a graph where each node 
has the same degree we get (G) 0degH = . To obtain a value between 0 
and 1 we can work with the relative entropy:

'

2

(G)
(G) ............................(7)

log #
deg

deg

H
H

J
=

The closer to 1 this last degree entropy measure is, the closer the 
graph is to maximum degree entropy. From now on, when we refer 
to the degree entropy, we mean this last definition.

The K-S entropy provides, on the other hand, for an important 
synthesis for a dynamical system, since it is an information measure 
on the sequence of nodes for a Markov process on a network, in this 
case, for the k nearest neighbors graph it provides an information 
measure for a Markov process with a transition matrix extracted 
from the graph, likewise, for the ordinal partition graph it provides 
for an information measure on a Markov process with a transition 
matrix extracted from the transition graph between the different 
permutations. For an un-weighted graph, which is our case, this 
entropy coincides with the logarithm of the dominant eigenvalue 
of the transition matrixµ+ , expressing it in bits leads to the following 
information measure:

2(G) log .......................(8)KSH µ+=

Now, besides the k-nearest neighbors graph, there is a final 
topological analysis method that is relevant, which is the, 
already mentioned, ordinal partition graph which is built from 
the permutations { }: 1, 2, ... , !

Ed i Ei dπΠ = =  of the dimensions’ set 
{ }1,2, ... , Ed , in this case, a permutation map : E

E

d
per df R →Π  is defined 

such that 1 2( , , ... , )
Eper d if x x x π=  with iπ satisfying the condition 

that (1) (2) ( )...
i i i dE

x x xπ π π≤ ≤ ≤ , that is, the permutation produces a non-
decreasing reordering of the values in the Ed tuple of real numbers, 
now, evaluating the permutation map for each phase point x t , we 
get a sequence of permutations (x )per tf , from this sequence we can 
build the ordinal partition graph O, where two permutations are 
linked if there is a transition between them.

The permutation entropy can be calculated from the probability 
distribution over the permutations in the ordinal partition graph 
O [23,25]:

2
1

( ) ( ) log ( ) (9)π π
−

=

= −∑
d E

i i
i

H d p

For the ordinal partition graph O, we also calculate here the degree 
entropy and the K-S entropy.

RESULTS

Analysis of series with attractors

The analysis we perform, as discussed in the introduction, is focused 
on the regional division in terms of Continents with an additional 
subdivision between North and South America. It turns out that 
a regional division, while providing aggregate data, produces a 
pattern that captures the general dynamics in the corresponding 
region in terms of general outbreak dynamics while compensating 
for specific countries’ undercounting of cases, a major problem for 
SARS-CoV-2, which limits the country-by-country analysis, and 
may be linked to test availability and the number of asymptomatic 
cases.

In an exploratory study, we found dynamical markers of 
undercounting, especially in Africa in both new cases and, in 

prediction function:

(x ) ........................(5)w t t kf x +=

We can then use the learned function to predict the target series 
k steps ahead by applying the function (x )w tf , the sliding window is 
then moved one step to the right and the learning algorithm is run 
again. This is a basic prospective prediction algorithm where the AI 
system behaves as an adaptive agent that relearns the patterns and 
adapts to changes in the series, adapting to the recurrence structure. 
Sliding window prospective models have been successfully applied 
in epidemiological prediction; a noticeable model was the testing of 
a sliding window prospective prediction model used to predict the 
H5N1 dynamics by Kane, et al. [24].

This adaptive agent prospective method is more effective than the 
fixed training data method for small datasets and for dealing with 
complex systems dynamics that exhibit bifurcation, attractors that 
have long periods, attractors with changing recurrence epochs, 
including alternation between laminar periods and turbulent 
periods, as well as regime switching. In this way, the adaptive agent 
approach allows the agent to capture epoch-specific recurrences 
in sliding windows (sliding recurrence epochs) and also adapt to 
changing dynamical patterns.

Again, since our goal is to evaluate the degree to which the recurrence 
structure in the attractor contains information on the future 
dynamics, which is a hallmark of the presence of a deterministic 
structure, we quantify the prospective adaptive agents performance 
using as main metrics the coefficient of determination, explained 
variance, root mean squared error divided by the data amplitude 
and the linear correlation between the observed and predicted 
values, in order to evaluate the degree to which the recurrence 
structure contains information on the future series’ dynamics.

Now, besides the distance matrix S, there are two other structures for 
topological analysis that can be calculated from the reconstructed 
attractor, the first is the k-nearest neighbors graph N, the second 
is a symbolic dynamics tool called the ordinal partition graph O, 
which is also used to calculate the permutation entropy [25].

In the first case, we have an undirected graph with the vertices 
corresponding to each phase point and the edges corresponding 
to the k nearest neighbors. To select the number of k neighbors 
to analyze, we use another machine learning method to build 
an adaptive agent, with a similar approach as described above, 
but instead of a radius learner we use a k-nearest neighbors’ 
learner for a single step prediction, by evaluating its performance 
on different k values we choose the value of k that leads to the 
highest predictability, since that is the value which contains the 
highest information for predicting the target series. In this case, 
we choose the value of k that leads to the highest coefficient of 
determination and then analyze the resulting k-nearest neighbors’ 
graph, calculating the degree entropy and the Kolmogorov-Sinai (K-
S) entropy for the graph [26].

Given a general graph G comprised of n nodes and the degree 
associated with each node, we can extract a frequency distribution 
over the set of different degree values J , leading to the relative 
frequencies jp  associated with each degree value j J∈ , from this 
distribution we can calculate the degree entropy as:

2(G) log .......................(6)deg j j
j J

H p p
∈

= −∑

In the special case of a graph where the relative frequencies 

!
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particular, in new deaths, leading some countries to exhibit a 
series with long zero new identified cases, and zero new deaths 
interrupted by a few jumps as well as ‘patchy’ series, while the 
overall aggregate pattern by region agrees for those countries that 
were able to implement a higher testing and were able to monitor 
the virus more closely. In this way, we work with the aggregate 
pattern by region, with similar methodology being possible to 
implement in those countries where the testing frequency allows 
for sufficient fluctuations to apply the analysis, providing for a 
basis for comparison between regions that otherwise would not be 
possible.

In Figure 1, we show the time series plots for the number of new 
cases per million for each region, obtained from the our world in 
data website. As can be seen from the plots, Africa stands out with 
a fast pattern of large successive waves this is the multiple wave 
pattern, while Asia, Europe, North and South America have a 
series of waves and then a few very large waves, this corresponds to 
a rogue wave-like pattern, where we have a series of smaller waves 
and then we get a very large wave, in Oceania, on the other hand, 
we have a dynamical regime change, there is a region with smaller 
fluctuations and then a rogue wave formed, after which the pattern 
becomes more turbulent with a higher number of new cases per 
million (Figures 1 and 2). 

new deaths per million plot, with a rise in turbulence and deaths 
after the regime change. This means that Oceania will require a 
different analysis process that will rely on the characterization of 
the regime change and a research into that change.

For the remaining five regions, which do not exhibit evidence of a 
dynamical regime change, we find evidence of a low dimensional 
chaotic attractor in both the number of new cases per million and 
the number of new deaths per million, as shown in Tables 1 and 

2. For the new cases per million series (Table 1), the number of 
degrees of freedom for the emergent attractor is three with an 
associated small but non-null percentage of false nearest neighbors, 
this may be indicative of the presence of noise and consistent with 
a stochastic chaos process, the largest Lyapunov exponent, in each 
case, is positive and near 0.002 (Table 1). 

Table 1: Main chaotic time series metrics for the five regions and new cases 
per million.

Embedding 
dimension

% FNN L1

Africa 3 6.364749 0.002112

Asia 3 4.423749 0.00216

Europe 3 6.162791 0.002674

North America 3 8.591885 0.0026

South America 3 5.816832 0.001877

For the new deaths per million (Table 2), we also have evidence 
favorable to a low dimensional chaotic attractor for each of the 
five regions, however, the embedding dimensions differ between 
regions, indeed, while Asia is still characterized by a three-
dimensional embedding, Europe and South America lead to a four-
dimensional embedding, while for Africa and North America we 
get a five dimensional embedding. The percentage of false nearest 
neighbors in each case is very small, below 1%, with the exception 
of Asia which has an around 3.7% value and South America which 
has an around 1.5% value. Noticeably, Africa has a 0% estimate of 
false nearest neighbors. These results point to a lower noise level 
in the reconstructed attractors, when compared to the new cases 
per million, despite, in general, the higher dimensionality of the 
resulting attractors as estimated by the lowest percentage of false 
nearest neighbors. The largest Lyapunov exponents are all positive 
but smaller than those of the new cases per million (Table 2).

Table 2: Main chaotic time series metrics for the five regions and new 
deaths per million.

Embedding 
dimension

% FNN L
1

Africa 5 0.0 0.001575

Asia 3 3.716609 0.001939

Europe 4 0.704225 0.001490

North America 5 0.245098 0.001214

South America 4 1.472393 0.001314

The Lyapunov spectrum, as shown in Figure 3, exhibits a good 
convergence with a dominant positive exponent in each region. In 
the new cases per million series, the Lyapunov spectrum converges 
to a positive exponent and two negative exponents, leading to a 
negative sum in the spectrum, which is consistent with dissipative 
chaos and the existence of an attractor in phase space in the 
number of new cases per million.

In the case of the number of new deaths per million’s Lyapunov 

Figure 1: Number of new cases per million of COVID-19 for each 
region in the database from the first observation to 2022-08-07.

Figure 2:  Number of new deaths per million from COVID-19 for each 

region in the database from the first observation to 2022-08-07.

The dynamical regime change in Oceania can also be seen in the 
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Figure 3: Lyapunov spectrum for the different regions’ embedded number of new cases per million series (left) and the embedded number of new 
deaths per million (right), using the matrix dimension equal to the dimension estimated by the false nearest neighbors with the spectrum calculated 
for increasing embeddings. 
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spectra (Figure 3), for Africa there is only one positive exponent, 
with the second largest exponent converging to a negative value but 
very near zero, a similar profile is obtained for Europe, Asia and 
South America, in the North America case, the second exponent 
converges to a positive value, however, it is also very near zero 
(0.000333). In each case the spectrum sum is negative which is, 
again, consistent with dissipative chaos and a chaotic attractor.

Applying spectral analysis to each series and region we find evidence 
of a black power law noise-like spectrum, in the majority of regions, 
in Figure 4 we show the power spectra for Africa in log-log scale 
with the estimated slope.

The estimated slope for the new cases per million in the power law 
decay region is -2.820713, with an associated R2 of 0.689679 and 
a p-value of 2.454008e-15, this means that we have 1/fβ spectrum 
with β approximately equal to 2.820713>2, which corresponds to a 
black power law noise-like spectrum. At the high frequency region 
we get a white noise spectrum with the exception of a rise in the 
spectrum and a peak that is consistent with a periodicity present at 
the high frequency region.

The estimated slope for the new deaths per million in the power 
law decay region is -2.953122, with an associated R2 of 0.674452 
and a p-value of 2.731255e-12, again we have a black noise-like 
spectrum. Contrasting with the new cases per million, the new 
deaths per million, while exhibiting a similar peak at the high 
frequency region, also show a wider white noise region than the 
new cases per million.

The black noise power law decay implies a strong persistence which 
is linked to long memory and the formation of persistent large 
outbreak waves visible in both the number of new cases and deaths. 
Since the evidence is favorable to a low dimensional noisy chaotic 
dynamics, the black noise-like spectrum may be linked to the 
chaotic dynamics itself, in this case, to a form of color chaos that 
can be called black chaos since it has a black (power law) noise-like 
spectrum. Power law chaos occurs for attractors such as the Lorenz 
attractor as well as for nonlinear chaotic maps and characterizes the 
color chaos dynamics, with black chaos being a form of color chaos 
that exhibits a black noise-like spectrum.

The peak at the high frequency region may have different possible 
explanations, one possible explanation would be an artifact 
produced by a testing periodicity, but this hypothesis is not 
supported by the evidence given that we have a similar peak in the 
new deaths per million.

Considering the evidence, we have a low dimensional chaotic 
attractor for both series (new cases and deaths) comprised of a 
long-range dynamics, which is supported by the low false nearest 
neighbors’ values leading to a low embedding dimension, a 
positive albeit small largest Lyapunov exponent, and a black noise-

like spectrum associated with the large outbreak waves and strong 
persistence that allows us to classify the dynamics as black chaos.

Now, the white noise spectrum at the high frequency region, after 
the power law decay, is either a feature of the attractor or a possible 
feature of the interplay between the black chaos and a white 
dynamical noise with a high frequency dominance, in which case, 
the peak may be a high frequency marker coming from the long 
memory chaotic process with power law spectrum (color chaos) 
leaving a dynamical marker in the form of a signal with a periodicity 
at the high frequency region, a signal that results from the interplay 
between the white dynamical noise and the underlying chaotic 
dynamics, this peak occurring thus as a form of noise-induced 
order in what is an underlying stochastic chaos dynamics.

Another possible explanation for the peak is that the chaotic 
attractor is close to a bifurcation point between a periodic orbit 
and a chaotic orbit. This possible explanation is supported by 
one piece of evidence, specifically, the low value of the largest 
Lyapunov exponents, which, along with these spectral signatures, 
support the possibility of the dynamics being near a bifurcation 
point corresponding to the onset of chaos, being close to a cycle, 
that is, the dynamics may be close to a bifurcation point between 
a periodic window and a chaotic dynamics, such peaks in the 
power spectra can indeed happen for chaotic dynamics close to 
the onset of chaos. Such proximity is a hypothesis that fits the data 
well, furthermore, in stochastic chaos; the stochastic component 
may induce a transition from what would be a periodic orbit to a 
chaotic orbit, in such a way that we have a form of noise-induced 
chaos but with the resulting dynamics being close to the onset of 
chaos. 

In chaos theory, the onset of chaos, as stated, corresponds to a 
bifurcation point where there is a transition from a periodic or 
quasiperiodic dynamics to a chaotic dynamics, near the onset of 
chaos we can find dynamics that, while being characterized by 
chaotic attractors, intermix long range periodic or quasiperiodic 
signatures in the recurrence structure for a sufficiently high value 
of the radius, this is so because near the bifurcation point, the 
chaotic dynamics has a low Lyapunov exponent and can exhibit 
recurrences associated with close proximity to periodic or even 
quasiperiodic orbits, especially if the dynamics is very close to the 
onset of chaos which is usually preceded by a regular structure such 
as, for instance, a periodic window.

Chaotic attractors near the onset of chaos tend to have low values 
for the maximum Lyapunov exponents and may recurrently visit 
a cycle or quasiperiodic orbit which becomes like a “ghost trail”, 
this sometimes shows up in the recurrence analysis in the form 
of long evenly (periodic) or unevenly spaced diagonals with 
100% recurrence that only show up for a sufficiently high radius, 
diagonals that are intermixed with broken diagonals and isolated 
points which are characteristic of chaotic dynamics.

Considering, now, the case of Asia, in Figure 5 is shown the 
power spectrum for the number of new cases per million and for 
the number of new deaths per million. We find again evidence 
of power law scaling with 1/fβ noise signatures with β>2, again 
favorable to the black chaos hypothesis. For the new cases per 
million, this power law scaling is dominant with the breakdown 
to a white noise spectrum being highly reduced and confined to 
the high frequency region, also we still get a peak indicating a close 
proximity to a cycle.

Figure 4: Power spectrum for Africa plotted in log-log scale with fitted 
line in the power law decaying region for the new cases per million 
series (left) and the new deaths per million series (right).
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we do not have a white noise spectrum but rather two dominant 
peaks in the new cases per million and three peaks in the number 
of new deaths per million, which again points to the presence of 
strong periodicities at the high frequency level, both in the new 
cases per million and the new deaths per million.

Given the above results, we are led to the same hypotheses as those 
raised for Africa, one being that the peaks indicate the occurrence 
of some form of noise-induced order in a chaotic dynamics, the 
second being that the dynamics is close to a bifurcation point 
with the periodic signatures arising from the close proximity to a 
periodic window, leaving a marker at the high frequency part of the 
spectrum. Given the low value of the largest Lyapunov exponent 
and the fact that spectral peaks linked to periodicities can happen 
for a chaotic dynamics near dynamics near a bifurcation point from 
periodic orbits to chaos (onset of chaos) the last hypothesis, again, 
fits well with the data.

Considering, now, North and South America, we find different 
profiles than those obtained for the previous regions. In North 
America, the decay is faster than the power law, the high frequency 
spectrum is also not white noise but has three peaks in both the 
new cases per million and the new deaths per million. In this way, 
we find that there is some persistence, in the low to mid frequency 
but it is not power law scaling, and at the high frequency we have 
the evidence of multiple periodicities. Again, this is characteristic 
of a chaotic dynamics near a bifurcation point, the presence of 
these peaks in both the new cases per million and the new deaths 
per million reinforces the hypothesis of a dynamics near the onset 
of chaos (Figure 7).

As shown in Figure 8, South America also has a faster decay for the 
new cases per million, but it has a power law decay in the deaths, 
the estimated exponent is 3.135302, with an R2 of 0.8566170 and a 
p-value of 2.492670e-13. Despite the different low frequency decay 
patterns, in the high frequency range, we get two peaks, which is 
again consistent with the hypothesis of a close to the onset of chaos 
dynamics.

The estimated exponent for the new cases per million is not as 
high as that of Africa, being closer to 2, which also means that the 
dynamics is slightly less persistent for Asia than for Africa, indeed, 
the estimated exponent is 2.209483 (obtained from the estimated 
slope in the log-log plot), with an R2 of 0.850672 and a p-value of 
1.265705e-25.

The new deaths per million series also shows a power law scaling, 
however the scaling corresponds to a much lower part of the 
spectrum, with the dominant frequency range being characterized 
by a white noise spectrum, which is consistent with the possibility 
that we are dealing with stochastic chaos where the dynamical noise 
process is characterized by high frequency white noise, a point 
already raised for Africa. The estimated exponent for the power 
law section is 3.058617, with an associated R2 of 0.600340 and a 
p-value of 5.009210e-07.

In the Asian case, there is a greater difference between the new 
deaths per million series and the number of new cases per million 
series, indeed, while in Africa we get a similar power spectrum 
profile, for Asia the power spectrum profile differs significantly, 
which contrasts with the dimensionality change, indeed, in Africa 
we go from a three dimensional to a five dimensional embedding, 
while in Asia the estimated dimensionality is the same (Figure 6).

Considering now the case of Europe, as shown in Figure 6, we find a 
power law scaling for both the number of new cases per million and 
the new deaths per million, with a similar overall profile in what 
regards both the scaling and the high frequency region. The power 
law scaling, in both cases is the dominant part of the spectrum and 
in both cases corresponds to a black noise-like spectrum. For the 
new cases per million the estimated exponent is 2.879192, with an 
R2 of 0.865065 and a p-value of 6.643054e-27, for the new deaths 
per million we get a similar power law decay of 2.812378, with an 
R2 of 0.735955 and a p-value of 2.046621e-18, therefore, we have 
a similar decay profile. Furthermore, in the high frequency region, 

Figure 5: Power spectrum for Asia plotted in log-log scale with fitted 
line in the power law decaying region for the new cases per million 
series (left) and the new deaths per million series (right).

Figure 6: Power spectrum for Europe plotted in log-log scale with fitted 
line in the power law decaying region for the new cases per million 
series (left) and the new deaths per million series (right).

Figure 7: Power spectrum for North America plotted in log-log scale for 
the new cases per million series (left) and the new deaths per million 
series (right).

Figure 8: Power spectrum for South America plotted in log-log scale for 
the new cases per million series (left) and the new deaths per million 
series with the fitted line in the power law decaying region (right).
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North America seems to have the strongest recurrence for 
intermediate radii, which implies that it may have the attractor 
that is closest to the onset of chaos, with the clearest recurrence 
structure. This pattern, however, is not the same for the new deaths 
per million’s reconstructed attractors as shown in Figures 11 and 
12 for the average recurrence strength and conditional recurrence 
probability.

Indeed, for the new deaths per million, we find that North America 
has predominantly lower recurrence strength and lower probabilities 
of finding 100% recurrence lines in lines with recurrence, this 
means that while North America’s new cases per million seems to 
have the strongest recurrence visible in intermediate radii, for the 
new deaths per million, we find that, until the radius of 3 s.d., 
Asia’s attractor is the one with the highest average recurrence 
strength and North America the one with the lowest, as the radius 
is increased beyond 3.5 s.d., Europe converges with Asia surpassing 
Asia for the radii of 4.5 and 5, while North America converges 
with South America, with Africa’s attractor becoming the attractor 
with the lowest value of recurrence strength though also convergent 
from below to the North and South America’s average recurrence 
strengths. 

As for the probability of finding a line with 100% recurrence, 
conditional on the line being a line with recurrence, South 
America’s probability rises faster than the remaining regions, 
becoming the predominant line, which means that South America 

Taking into account these results, we now turn to the topological 
analysis. In Figure 9, we show the average recurrence strength 
calculated for different radii with increasing radius in units of 
standard deviation (s.d.) for the number of new cases per million’s 
reconstructed attractors. 

 

We find that, for the lower values of the radius, North America 
stands out with a higher average recurrence strength which initially 
grows faster than the remaining regions with increasing radius; this 
means that there is a stronger average recurrence visible in lower 
radius values for this region. For radii between 1.5 and 4 s.d., North 
and South America are the predominant regions in terms of average 
recurrence strength, that is, they have the highest proportion of 
recurrence points over the number of diagonals below the main 
diagonal. Africa, in turn, only surpasses these two regions for radii 
of 4.5 s.d. and 5 s.d., with Europe and Asia converging from below 
to the North and South America’s average recurrence strengths as 
the radius is increased, but Asia stands out as being predominantly 
below the other regions for the analyzed radii (Figure 10).

The conditional 100% recurrence probability also shows a similar 
pattern. Asia stands out as the region with both the lowest average 
recurrence strength and the lowest probability of finding a 100% 
recurrence line in a random selection of lines with recurrence 
(Figure 10). Contrastingly, North America dominates the 
intermediate radii (between 2.5 and 4), with Africa coming second 
up to the 3.5 s.d. radius. At a radius of 4 s.d., South America 
converges to North America’s pattern, and for the radii of 4.5 s.d. 
and 5 s.d. Africa becomes dominant in terms of the probability of 
finding a 100% recurrence line conditional on the line containing 
recurrences points.

Figure 9: Average recurrence strength calculated for different radii with 
increasing radius, for the embedded series of the number of new cases 
per million’s reconstructed attractors with the radii taken in units of 
standard deviation. Note: ( ) Africa; ( ) Asia; ( ) Europe; ( ) 
North America; ( ) South America.

Figure 11: Average recurrence strength calculated for different radii with 
increasing radius, for the embedded series of the number of new deaths 
per million with the radii taken in units of standard deviation.  Note: (

) Africa; ( ) Asia; ( ) Europe; ( ) North America; ( ) South 
America.

Figure 12: Conditional 100% recurrence probability calculated for 
different radii with increasing radius, for the embedded series of the 
number of new deaths per million with the radii taken in units of 
standard deviation. Note: ( ) Africa; ( ) Asia; ( ) Europe; ( ) 
North America; ( ) South America.

Figure 10: Conditional 100% recurrence probability calculated for 
different radii with increasing radius, for the embedded series of 
the number of new cases per million with the radii taken in units of 
standard deviation. Note: ( ) Africa; ( ) Asia; ( ) Europe; ( ) 
North America; ( ) South America.
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Table 4: Maximum persistence for the five regions and homology 
dimensions 0 to 2.

Maximum 
persistence

New cases New deaths

H0 H1 H2 H0 H1 H2

Africa 12.7619 3.479 0.9513 0.4419 0.1228 0.0253

Asia 46.8804 36.6568 2.8549 0.3554 0.2006 0.0305

Europe 447.1697 277.1158 32.5501 2.0519 1.2889 0.3488

North 
America

915.0522 183.8258 16.7437 3.7855 1.0945 0.3973

South 
America

248.9097 122.091 8.0882 4.4615 1.201 0.6799

Table 5: Mean persistence for the five regions and homology dimensions 
0 to 2.

Mean persistence
New cases New deaths

H0 H1 H2 H0 H1 H2

Africa 1.4334 0.3712 0.1373 0.0685 0.0106 0.0038

Asia 4.1626 1.3028 0.2843 0.0348 0.0084 0.004

Europe 52.7557 14.2232 4.7414 0.5297 0.1263 0.0574

North America 40.0296 8.491 3.3073 0.9573 0.1744 0.0717

South America 24.9506 6.3083 2.3986 0.6662 0.1367 0.0598

For the new deaths per million’s embedded series, we also find 
that Africa and Asia have the lowest persistence values both in 
terms of maximum persistence and mean persistence, again, with 
Europe, North and South America standing out. In regards to the 
maximum persistence metric and the homology dimension 0, we 
find that South America stands out followed by North America 
and by Europe, the same holding for homology dimension 2, 
for homology dimension 1; we find that Europe has the highest 
maximum persistence value followed by South America and then 
North America. Regarding the mean persistence, North America 
stands out as having the highest value.

For all groups there is only one infinity class which corresponds to 
homology dimension 0, furthermore, unlike the other dimensions, 
all homology dimension 0 classes are born at 0, as shown in Figure 
13 which shows the persistence diagrams for the new cases per 
million’s reconstructed attractor (top) and new deaths per million’s 
reconstructed attractor (bottom).

The persistence analysis, thus, shows some differences between 
the regions, in regards to the attractors’ topological structure; 
however, there is also a clear division into two groups: Africa and 
Asia, on the one hand, and Europe, North America and South 
America, on the other. The first group is characterized by smaller 
persistence metrics’ values, while the second is characterized by 
higher persistence metrics’ values. We also find that the new deaths 
per million show smaller persistence metrics’ values than the new 
cases per million.

has a more regular structure when the radius is increased when 
it comes to deaths, followed by Asia, Europe, Africa and, finally, 
North America. 

Considering, now, the homology classes analysis of the Vietoris–
Rips filtration from the distance matrix S, we find that, in each 
region, the dominant dimension in terms of number classes is 
H0, which corresponds to connected components, followed by H1, 
which corresponds to loops and, finally, H2, which corresponds to 
voids (Table 3). For the homology dimensions 1 and 2 we find that 
North America is the region with the highest number of classes, for 
the new cases per million.

Table 3: Number of persistence classes for the five regions and homology 
dimensions 0 to 2.

Regions
New cases New deaths

H0 H1 H2 H0 H1 H2

Africa 877 316 33 847 479 131

Asia 899 257 26 899 274 37

Europe 898 315 32 883 409 71

North America 899 337 44 869 458 164

South America 868 308 33 853 411 81

Indeed, for the number of new cases per million and the homology 
dimension 0, North America has 899 classes, which is the same 
number of classes as Asia and the highest number, however, for 
the homology dimension 1, we find that North America has 337 
classes while Asia only has 257 (which is the region with the lowest 
number of classes H1), a similar pattern is found for the homology 
dimension 2, where we find that North America has, again, the 
highest number of classes 44 while Asia only has 26, the lowest 
number of classes. This indicates that the North America’s new 
cases per million attractor may have a higher complexity in terms of 
its topological structure.

For the new deaths per million and H0, we find that Asia has the 
highest number of classes H0 (899) followed by Europe (883) with 
North America only coming in third with 869 classes. For H1, we 
find that Africa has the highest number of classes (479), followed 
by North America (458), while for H2 we find that North America 
has the highest number of classes (164) followed by Africa (131).

Considering the persistence metrics we find that, as shown in 
Tables 4 and 5, for all regions, the new deaths per million show 
smaller values in both maximum and mean persistence than the 
new cases per million. For the new cases per million embedded 
series, the lowest persistence values both in terms of maximum 
persistence and mean persistence are obtained for Africa and Asia, 
while Europe, North and South America show higher persistence 
metrics’ values for the homology classes. Regarding the maximum 
persistence values, we find that North America has the highest 
maximum persistence value of the group for homology dimension 
0, but Europe has the highest values of terms of maximum 
persistence for homology dimensions 1 and 2, also standing out as 
having the highest mean persistence for all homology dimensions. 
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9 79.05% 89.95% 86.15% 72.87% 78.32%

10 77.47% 88.98% 84.82% 71.27% 76.05%

11 76.78% 88.03% 84.16% 69.15% 74.57%

12 76.77% 87.24% 84.41% 67.37% 74.13%

13 76.90% 86.48% 84.98% 68.11% 74.07%

14 76.46% 85.54% 84.85% 66.17% 73.17%

Table 7: R2 scores of the adaptive AI for a one-step-ahead learning of the 
number of new deaths per million, for different sliding learning window 
sizes and each of the five regions.

Learning 
window

Africa Asia Europe
North 

America
South 

America

7 82.02% 91.72% 84.17% 62.84% 88.51%

8 81.68% 91.42% 82.62% 60.27% 87.76%

9 80.63% 91.00% 80.44% 55.65% 86.49%

10 79.69% 90.54% 78.70% 51.97% 85.44%

11 79.12% 90.04% 77.90% 51.38% 85.09%

12 79.09% 89.51% 78.71% 54.32% 85.72%

13 79.28% 88.99% 80.24% 58.83% 86.76%

14 79.06% 88.38% 80.50% 60.45% 87.05%

However, the R2 score tends to decrease in general with the window 
size, with the highest values of R2 being obtained for a 7 samples 
training window. In this case, North America stands out as the 
region with lowest R2 followed by Africa, which comes in second 
after North America as the region with the worst performance, 
even though the performance is very high for all the regions when 
a 7 period window is used, with all regions, except North America, 
exceeding an 80% R2, and with North America exhibiting an R2 of 
around 77.31% for the new cases per million and 62.84% for the 
new deaths per million. Noticeably, Asia stands out as having an 
R2 higher than 90%, for both the new cases per million and the 
new deaths per million. Working, then, with a 7 samples window, 
we show in Tables 8 and 9 the different metrics for the one-period-
ahead prediction. 

Considering, now, the degree to which the recurrence patterns in 
a Euclidean distance matrix contain information that may allow 
an adaptive agent to use it to predict the corresponding series, 
as discussed in the previous section, we use the sliding window 
learning approach and scikit-learn’s radius neighbor learner. The 
key for the window choice is that it cannot be too short since we 
may not obtain any recurrence patterns, but it cannot also be too 
large since we will get a smoothed trajectory and the agent will not 
be able to predict well the performance.

In Tables 6 and 7, we show the R2 score of the learner for a one-
step-ahead learning using sliding learning windows between 7 data 
points (7 samples/one week) to 14 data points (14 samples/two 
weeks) for the new number of cases per million and the new deaths 
per million.

The learning algorithm used is the radius nearest neighbor 
regression, which uses the recurrence information for a given 
radius to learn, in this way it allows us to see the predictability of 
the signal using the recurrence information from the reconstructed 
attractor, as discussed in the previous section. For the radius value 
we used five standard deviations (5 s.d.), the metric is the Euclidean 
distance and a brute force algorithm was used. The choice of the 
standard deviation comes out of the previous recurrence analysis, 
indeed for 5 s.d. we found the stronger recurrence results for all 
the regions, and the objective of this analysis is to characterize the 
degree to which the recurrence structure contains information on 
the future trajectory of each target series. 

As can be seen in Tables 6 and 7, for all the learning window sizes, 
the score is high showing that the past recurrence structure has a 
high degree of information on the dynamics for the one-period-
ahead value of the corresponding target series.

Table 6: R2 scores of the adaptive AI for a one-step-ahead learning of the 
number of new cases per million, for different sliding learning window 
sizes and each of the five regions.

Learning 
window

Africa Asia Europe
North 

America
South 

America

7 82.01% 91.68% 88.87% 77.31% 82.38%

8 80.92% 90.87% 87.84% 74.47% 80.76%

Figure 13: Persistence diagrams for each region’s number of new cases per million’s reconstructed attractor (top) and number of new deaths per 
million’s reconstructed attractor (bottom).



14

Gonçalves CP

Int J Swarm Evol Comput, Vol. 11 Iss. 9 No: 1000271

ahead prediction, the performance does not drop significantly 
as shown in Tables 10 and 11, furthermore, it can even increase 
relative to the one-step-ahead prediction, as shown in table 11 for 
Europe, in which the performance increases for the 14 days ahead 
prediction and then again for the 30 days ahead prediction, while 
for North America where there is an increase for the 14 days ahead 
prediction’s performance, with a subsequent decrease for the 30 
days ahead prediction, and, finally, South America, for which there 
is a slight decrease in the 14 days ahead prediction’s performance 
and then an increase for the 30 days ahead prediction. The long 
range predictability of the series is to be expected given the black 
chaos spectrum and the high frequency periodicities, as well as the 
recurrence analysis results.

Table 10: R2 scores of the adaptive AI for a 7,14 and 30 days ahead 
prediction of the number of new cases per million, for a 7 samples sliding 
learning window.

 7 14 30

Africa 81.85% 81.65% 81.19%

Asia 91.62% 91.56% 91.40%

Europe 88.82% 88.77% 88.66%

North America 77.75% 77.50% 76.99%

South America 82.24% 82.08% 81.74%

Table 11: R2 scores of the adaptive AI for a 7, 14 and 30 days ahead 
prediction of the number of new deaths per million, for a 7 samples sliding 
learning window.

 7 14 30

Africa 81.89% 81.74% 81.44%

Asia 91.64% 91.55% 91.35%

Europe 84.21% 84.51% 84.79%

North America 63.02% 63.24% 63.13%

South America 88.45% 88.44% 88.48%

Moving from the recurrence structure associated with the 
distance matrix to the k-nearest neighbors’ topological analysis, 
to perform this analysis, we first evaluate for which number of 
k-nearest neighbors the reconstructed attractor contains the most 
information that can be used to predict the series, in Tables 12 and 
13 we show the R2 scores for the single period prediction for the 
new cases per million and the new deaths per million, respectively. 
As can be seen from the results shown in both tables for Africa and 
Asia, the highest R2 is obtained only for a large number of nearest 
neighbors when compared to the sliding window size, while the 
highest score for Europe is achieved with a lower number of nearest 
neighbors.

For North America and South America the highest scores for the 
new cases per million are achieved for a higher number of nearest 
neighbors, while for the new deaths per million they are obtained 
for a smaller number of nearest neighbors. Globally, considering 
both series and all the regions, we find that the scores are very 
high, which means that the k-nearest neighbors also contain 
relevant information that can be used for prediction. Considering 
that the scores reflect the level of information that can be used for 
predicting the target series by an adaptive AI using the k-nearest 
neighbors’ algorithm, we should use, for the topological analysis, 
in each case, the number of neighbors that lead to the highest score 
in prediction, as discussed in the previous section, therefore, in 

Table 8: Main performance metrics of the adaptive AI for a one-step-ahead 
prediction of the number of new cases per million, for a 7 samples sliding 
window.

 Correlation
RMSE/

Amplitude
Explained 
variance

R2 score

Africa 0.905993 8.40% 82.01% 82.01%

Asia 0.957695 4.99% 91.71% 91.68%

Europe 0.942834 5.70% 88.87% 88.87%

North 
America

0.879779 4.99% 77.31% 77.31%

South 
America

0.90824 6.16% 82.38% 82.38%

Table 9: Main performance metrics of the adaptive AI for a one-step-ahead 
prediction of the number of new deaths per million, for a 7 samples sliding 
window.

 Correlation
RMSE/

Amplitude
Explained 
variance

R2 score

Africa 0.90597 7.18% 82.02% 82.02%

Asia 0.957866 5.82% 91.72% 91.72%

Europe 0.917579 8.78% 84.17% 84.17%

North 
America

0.793074 10.77% 62.84% 62.84%

South 
America

0.940868 7.28% 88.52% 88.52%

Considering the correlation, we find a high positive correlation 
between the predictions and the series’ values for all the regions. 
This is indicative that the topological information contained in the 
7 samples sliding window can be exploited by a radius neighbor 
algorithm to yield a forward-looking prediction for the one-period-
ahead target variable with a very high performance in terms of 
linear correlation between the prediction and the target. 

Again, North America stands out as the region where the artificial 
agent has the lowest performance, with the lowest correlation, 
albeit being close 0.88 in the new cases per million series and to 
0.79 in the new deaths per million series. In regards to the RMSE/
Amplitude in percentage indicator, we find that, for the one-step-
ahead prediction, for the new cases per million, the highest error 
per amplitude is obtained for Africa with an RMSE that is around 
8.399% of the total data amplitude, which is still a low value, North 
America, in this case, shows the best performance of the group with 
a value of 4.985%, by contrast, for the new deaths per million series 
we find the worst performance in North America with a value of 
10.769%, which means that the RMSE is around 10.769% of the 
total data amplitude, which is nonetheless a low result.

The explained variance and R2 score show a similar profile, with 
the best performance being obtained for Asia with a more than 
90% value in these two indicators, for the two series, and the worst 
performance being obtained for North America with a near 77% 
value for the new cases per million and a near 63% value for the 
new deaths per million.

In terms of general pattern, we, thus, find that the one-period-
ahead series has a strong predictability when using the topological 
information contained in the Euclidean neighborhood structure. 
Also, if we move beyond a single period prediction to consider a 
1 week ahead (7 days), two weeks ahead (14 days) and a 30 days 
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and 15, we find that, for the new cases per million, in regards to 
the degree distribution entropy, all the regions exhibit low entropy 
with similar values (all close to 0.23), with the exception of Europe 
that stands out as the region with the lowest degree distribution 
entropy (around 0.19). 

Table 14: Main entropy values for Figure 14’s k-NN networks.

 
Degree distribution 

entropy
Kolmogorov Sinai 

entropy

Africa 0.23185 2.829805

Asia 0.237356 3.07779

Europe 0.191127 2.261513

North America 0.232304 2.960116

South America 0.231839 2.937294

Table 15: Main entropy values for Figure 15’s k-NN networks.

 
Degree distribution 

entropy
Kolmogorov Sinai 

entropy

Africa 0.27875 3.212553

Asia 0.252241 3.172343

Europe 0.164099 1.840823

North America 0.178254 1.926514

South America 0.203755 2.320865

Likewise, for the K-S entropy, all the regions show a similar profile 
(a value close to 3 bits) with Europe again standing out with the 
lowest K-S entropy (around 2.26 bits). For the new deaths per 
million, we find again Europe as having the lowest entropy values 
but closer to those of North America.

Considering now the symbolic dynamics, we find that the ordinal 
partition graph for all regions, in the case of the reconstructed 
attractor, for the number of new cases per million, is the complete 
graph with six nodes 6K  as shown in Figure 16.

The graph 6K ’s appearance in each region’s reconstructed attractor 
indicates that this is a robust topological feature of the SARS-
CoV-2’s dynamics which is independent from each region’s 
dynamics. From a computational standpoint, such a 6K  graph 
can be associated with a triadic encoding for a three-letter word 
with no repetitions, with each node associated with the possible 
permutations of a three letter word with each letter being chosen 
from a three letter alphabet, which provides for a symbolic encoding 
of the three dimensions.

Figures 14 and 15 we show the k-nearest neighbor graphs and K-S 
entropies for each region, for the number of new cases per million 
(Figure 14) and for the number new of deaths per million (Figure 
15), using, in each case, the number of nearest neighbors k that 
leads to the maximum R2 score shown in Tables 12 and 13.

Table 12: R2 scores of the k-NN adaptive AI for the new cases per million 
series and a 7 samples sliding learning window.

k Africa Asia Europe
North 

America
South 

America

2 79.98% 89.16% 89.97% 72.55% 81.28%

3 80.59% 89.77% 90.19% 76.27% 81.63%

4 81.79% 89.77% 89.98% 76.10% 82.24%

5 81.84% 90.80% 89.29% 77.64% 82.76%

6 81.75% 91.30% 89.11% 77.41% 82.47%

Table 13: R2 scores of the k-NN adaptive AI for the new deaths per million 
series and a 7 samples sliding learning window.

k Africa Asia Europe
North 

America
South 

America

2 77.76% 87.06% 88.42% 75.76% 91.27%

3 79.69% 88.67% 87.84% 74.80% 91.28%

4 80.43% 89.77% 87.15% 70.70% 90.49%

5 81.01% 90.57% 86.20% 67.33% 89.73%

6 81.60% 91.20% 85.01% 65.44% 89.04%

As can be seen in Figures 14 and 15, in conjunction with Tables 14 

Figure 14: k-nearest neighbors’ graphs for each region’s number of new 
cases per million’s reconstructed attractor and the corresponding K-S 
entropy, using the value k that leads the highest R2 in table 12.

Figure 15: k-nearest neighbors’ graphs for each region’s number of new 
deaths per million’s reconstructed attractor and the corresponding K-S 
entropy, using the value k that leads the highest R2 in table 13.

Figure 16: Ordinal partition graph that characterizes each region’s 
number of new cases per million’s reconstructed attractors.
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we show, in Figure 17, the connected components of the k-nearest 
neighbors’ graphs for Africa, Europe, South America and North 
America.

Having analyzed the cases where there is evidence of emergence of 
chaotic attractors, we now proceed to analyze the case of Oceania 
where there is evidence of a bifurcation.

Oceania’s dynamics–a bifurcation in SARS-CoV-2’s 
outbreak dynamics

Unlike the other regions, Oceania does not have a fixed attractor; 
there is instead evidence of a bifurcation associated with a break 
in an original attractor’s stability, followed rapid buildup of viral 
outbreak dynamics visible in both the new cases per million and 
the new deaths per million series. 

The first marker of a change can be seen in the new cases per 
million and the new deaths per million time series charts as shown 
in Figure 18, where two dynamics are clearly visible, first there is a 
lower fluctuation level, then there is a large outbreak followed by 
a turbulent dynamics with larger number of new cases per million 
values and a buildup in deaths. 

The dynamics can actually be divided into three stages. The first 
stage is characterized by a dynamics with lower outbreak numbers, 
yet with markers of turbulence, this dynamics characterizes the 
period from 2020-01-25 to 2021-06-07. The second stage occurs 

The 6K  structure arises due to two factors, the first is that the 
embedding dimension is equal to 3 which leads to six permutations, 
therefore six nodes for the graph, the second factor is that the 
dynamics is such that all possible transitions between the six nodes 
occur, which makes the graph for the transitions a complete graph. 

From a symbolic dynamics standpoint, the fact that we get the same 
ordinal partition graph, means that we get a graph isomorphism 
between any two regions, all the regions’ reconstructed attractors 
are, thus, characterized by the same ordinal partition graph, and 
thus the same underlying computational structure, the permutation 
entropy values are also close to each other, however, there are some 
differences as can be seen in Table 16.

Table 16: Permutation entropy for each region’s number of new cases per 
million’s reconstructed attractors.

 Perm. Entropy

Africa 2.291354

Asia 2.209633

Europe 2.270652

North America 2.349743

South America 2.412355

As shown in Table 16, Asia is the region with the smallest value for 
the permutation entropy, followed, in increasing order, by Europe 
and Africa. South America has the highest value of the permutation 
entropy followed by North America. The degree entropy for this 
graph is zero and the K-S entropy is the same for all regions and 
equal to 2.321928.

For the new deaths per million, the reconstructed attractor for Asia 
is still given by the 6K  graph, with a higher permutation entropy 
2.375796, without any change in the degree and K-S entropies’ 
values in comparison to the new cases per million attractor.

The remaining regions do not keep a complete graph structure 
for the new deaths per million, for their respective embedding 
dimensions, however, it should be stressed that, if a three 
dimensional embedding were used, then, we would still recover 
the complete graph structure for all regions, that is the 6K  graph 
characterizes all regions at a three dimensional embedding. When 
the embedding dimension is raised beyond 3, we no longer get 
complete graphs (Table 17).

Table 17: Ordinal partition graph’s main entropy measure for each region’s 
number of new deaths per million’s reconstructed attractors.

 Perm. Entropy Degree Entropy K-S Entropy

Africa 5.784736 0.583712 3.61576

Asia 2.375796 0 2.32193

Europe 3.67806 0.786351 3.80668

North America 5.833933 0.581945 3.74116

South America 3.966362 0.735372 3.94223

In this case, for the embedding parameters obtained from the 
false nearest neighbors’ criterion, as shown in Table 17, the region 
with the highest permutation entropy is North America followed 
by Africa, while in degree entropy we find Europe as the region 
with the highest entropy followed by South America, finally, with 
respect to the K-S entropy we find that South America is the region 
with the highest value followed by Europe. For better visualization, 

Figure 17: Connected components of the ordinal partition graphs 
that characterize Africa, Europe, North America and South America’s 
respective number of new deaths per million’s reconstructed attractors.

Figure 18: Oceania’s new cases per million series (left) and new deaths 
per million series (right).
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methods. In this way, the chaotic time series metrics cannot be 
applied to the whole series. However, the topological analysis 
methods can.

Considering these methods, we find that there are some problems 
with using a recurrence matrix, in the sense that while it can be 
used to identify topological changes, the distances that may be used 
in a fluctuation scale change and this may interfere with the ability 
to extract recurrence statistics due to the identified bifurcation 
leading to different fluctuation sizes, in this case, it is best to use 
the k-nearest neighbors’ learner and compare the performance for 
different embedding dimensions, we still use the 15 day lag as in 
the other regions, taking into account the quarantine period effects. 
Considering, first, a base three-dimensional embedding with a 7 
day sliding learning window, as shown in Tables 18 and 19, we find 
that for the number of new cases per million the best performance 
is obtained for 6 neighbors, while, for the number of new deaths 
per million, the best performance is obtained for 5 neighbors.

Table 18: Performance scores, with a three-dimensional embedding for 
the one period ahead prediction of a k-nearest neighbor’s algorithm for 
the number of new cases per million, with increasing values of k and a 7 
samples sliding window.

k Correlation
RMSE/

Amplitude
Explained 
variance

R2 score

2 0.914802 5.57% 83.31% 83.29%

3 0.922032 5.32% 84.78% 84.76%

4 0.927898 5.10% 85.98% 85.96%

5 0.929938 5.03% 86.39% 86.37%

6 0.935225 4.84% 87.41% 87.39%

Table 19: Performance scores, with a three-dimensional embedding for the 
one period ahead prediction of a k-nearest neighbors’ algorithm for the 
number of new deaths per million, with increasing values of k and a 7 
samples sliding window.

k Correlation
RMSE/

Amplitude
Explained 
variance

R2 score

2 0.840435 8.12% 70.50% 70.30%

3 0.828712 8.36% 68.64% 68.46%

4 0.840793 8.08% 70.68% 70.55%

5 0.845084 7.97% 71.36% 71.33%

6 0.843407 8.01% 71.12% 71.09%

Taking these results into account, we compare the impact of 
increasing embedding dimensions on the predictability of the 
series, the dimension with the highest predictability is the one that 
we will use for further analysis, since it is the one that leads to 
the greatest captured pattern, including the bifurcation dynamics, 
which can be exploited by an adaptive AI using the k-nearest 
neighbors’ information, the chosen embedding dimension will be 
the one that has more information on the dynamics exploitable by 
such an agent. 

As shown in Tables 20 and 21, the best performance is obtained for 
a three-dimensional embedding. Using, thus, a three-dimensional 
embedding, we can apply the topological analysis methods for the 
k-nearest neighbors graphs and the ordinal partition graphs with 
the corresponding number of k nearest neighbors chosen from 
the values that lead to the highest prediction performance in 
Tables 18 and 19, in this case, k=6 for the number of new cases 

between 2021-06-08 and 2021-12-14, which corresponds to a 
buildup stage leading to the large outbreak, in this period the initial 
dynamics and any corresponding possible attractor seem to have 
lost stability exhibiting a transient period with a buildup to the new 
more turbulent stage with higher number of reported positive cases 
and deaths, leading to the third stage, from 2021-12-15 onwards, 
where there is a large outbreak followed by an on average larger 
number of positive cases and deaths.

The three stages are shown in Figure 19, for the number of new 
cases per million, which illustrates well the change occurring in the 
three stages.

If we obtain the power spectral densities for each stage and the 
number of new cases per million, we find that stage 1 has a 
power law decay section in the low frequency range with a black 
noise spectrum with estimated exponent of 2.782218, with an 
associated R2 of 0.578568 and p-value of 0.000993, while stage 2 
is characterized by the breakdown of the power law scaling with a 
fast transition to a white spectrum, stage 3 is again characterized by 
a black noise power law scaling in the spectrum with a power law 
decay with an estimated exponent of 2.960222, with an associated 
R2 of 0.717362 and p-value of 6.775415e-05. Figure 20 shows the 
power spectra for the three stages. 

The evidence is compatible with a bifurcation occurring at the end 
of stage 1, with the loss of stability of the underlying dynamics. In 
stage 1, the dynamics is characterized by a black noise spectrum. 
In stage 2, there is a breakdown to a low memory process with a 
white spectrum as predominant, this marks a transient dynamics 
associated with a transition to a new dynamics at stage 3, and a 
possible new attractor, which is characterized by a black noise 
spectrum with a breakdown to a white spectrum at the high 
frequency region. The new dynamics shows a stronger persistence 
than the previous one. 

Faced with this evidence, we cannot use the false nearest neighbors’ 
selection process to obtain an embedding dimension, since 
there may be dimensional changes and the three stages do not 
provide for sufficient data for reliable embedding parameters and 
Lyapunov exponents’ estimations, a problem that is reinforced 
by the bifurcation itself which is contrary to the assumption of a 
fixed stable attractor assumed in these chaotic time series analysis 

Figure 19: Three stages of the dynamics for the number of new cases per 
million, with stage 1 shown in the left, stage 2 shown in the middle and 
stage 3 shown in the right.

Figure 20: Power spectra for the three stages and the number of new 
cases per million, with stage 1 shown in the left, stage 2 shown in the 
middle and stage 3 shown in the right.
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In Tables 22 and 23 we show the respective graph entropy measures. 
Considering the new cases per million and the k-nearest neighbors 
graph, we find that the transition from stage 1 to stage 2 comes 
with an increase in the graph degree entropy but a decrease in 
the K-S entropy, which means that while there is a more random 
distribution of the node degrees, the entropy associated with a 
Markov process on the graph is reduced. From stage 2 to stage 3, 
still considering the k-nearest neighbors graph, we have a decrease in 
graph degree entropy and an increase in the K-S entropy. Therefore, 
while we have a less random distribution of the degrees, we have 
an increase in the entropy associated with a Markov process on the 
graph, which is the highest of the three stages. 

Table 22: Entropy measures for the k-nearest neighbors and ordinal 
partition graphs of Figure 21.

Stage 1 Stage 2 Stage 3

Degree Entropy (KNN) 0.267476 0.330146 0.325345

K-S Entropy (KNN) 3.096103 3.077432 3.137238

Degree Entropy (Ordinal) 0 0 0.564475

K-S Entropy (Ordinal) 2.321928 2.321928 2.070895

Permutation Entropy 2.499085 2.408072 2.47168

Table 23: Entropy measures for the k-nearest neighbors and ordinal 
partition graphs of Figure 22.

 Stage 1 Stage 2 Stage 3

Degree Entropy (KNN) 0.270277 0.294282 0.29531

K-S Entropy (KNN) 4.609673 2.762875 2.847433

Degree Entropy (Ordinal) 0 0 0

K-S Entropy (Ordinal) 2.321928 2.321928 2.321928

Permutation Entropy 2.228261 2.527406 2.556174

For the new cases per million, the ordinal partition graphs, in turn, 
provide important information, in stage 1 and stage 2 the ordinal 
partition graph is the 6K  graph, which also characterizes the other 
regions’ new cases per million dynamics, as analyzed in the previous 
subsection. In this sense, the Oceania dynamics at stages 1 and 2, 
from a topological standpoint in terms of the symbolic dynamics 
associated with the permutation analysis, shows a computational 
equivalence to the other regions, in the sense that we still get an 
ordinal partition graph that is isomorphic to the other regions. 

per million and k=5 for the number of new deaths per million. 
In Figures 21 and 22, we show, respectively, the corresponding k 
nearest neighbors and ordinal partition graphs for the number of 
new cases per million and the number of new deaths per million, 
for the three stages from left to right.

Table 20: Performance scores, for different embedding dimensions and 
one period ahead prediction of a k-nearest neighbor’s algorithm for the 
number of new cases per million, with increasing embedding dimensions 
and a 7 samples sliding window. 

dE Correlation
RMSE/

Amplitude
Explained 
variance

R2 score

3 0.935225 4.84% 87.41% 87.39%

4 0.934814 4.88% 87.32% 87.31%

5 0.935068 4.90% 87.37% 87.36%

6 0.934272 4.96% 87.21% 87.20%

7 0.933902 5.01% 87.13% 87.12%

8 0.933633 5.05% 87.08% 87.07%

9 0.933352 5.09% 87.03% 87.02%

10 0.932736 5.15% 86.91% 86.90%

Table 21: Performance scores, for different embedding dimensions and 
one period ahead prediction of a k-nearest neighbor’s algorithm for the 
number of new deaths per million, with increasing embedding dimensions 
and a 7 samples sliding window.

dE Correlation
RMSE/

Amplitude
Explained 
variance

R2 score

3 0.845084 7.97% 71.36% 71.33%

4 0.839036 8.16% 70.36% 70.29%

5 0.836901 8.25% 69.95% 69.92%

6 0.834142 8.36% 69.47% 69.44%

7 0.83451 8.40% 69.53% 69.49%

8 0.836365 8.39% 69.87% 69.82%

9 0.834683 8.47% 69.58% 69.53%

10 0.831927 8.58% 69.10% 69.04%

Figure 21: New cases per million’s k nearest neighbors (k=6) and ordinal 
partition graphs obtained for a three-dimensional embedding and with 
stage 1 shown in the left, stage 2 shown in the middle and stage 3 shown 
in the right.

Figure 22: New deaths per million’s k nearest neighbors (k=5) and 
ordinal partition graphs obtained for a three-dimensional embedding 
and with stage 1 shown in the left, stage 2 shown in the middle and stage 
3 shown in the right.
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like spectrum. We found that there is enough information in the 
topological structure of these attractors for an artificial adaptive 
agent equipped with a nearest neighbor machine learning module 
to predict the future dynamics of each of these series using the 
reconstructed attractor, this holds for both radius and k-nearest 
neighbor modules.

For Oceania, we identified the occurrence of a bifurcation and 
characterized it using the artificial adaptive agent with a k-nearest 
neighbors learning module showing that the bifurcation can be 
well captured by the k-nearest neighbors sliding learning window, 
we used the highest predictability values for k to find the optimal 
parameters for topological data analysis and found that the 
bifurcation occurred with changes in k-nearest neighbors dynamics 
visible in the entropy metrics, but also, for the new cases per million, 
in the ordinal partition graph. This bifurcation was linked to new 
variants, namely delta and, in particular, the omicron variant.

The evidence that the attractors are near the onset of chaos, along 
with the occurrence of the bifurcation in Oceania that led to a 
large outbreak and a change in the dynamics to higher values of the 
number of new cases and new deaths per million, is indicative of 
the possibility that attractors may change due to bifurcations in the 
dynamics, particularly linked to the emergence of new variants with 
possibly larger transmissibility and with a lower immune response.

In this sense, from the results obtained from the analysis, we find 
that we do not have an homogeneous attractor for all the regions, 
different regions show key differences, in terms of attractors and 
predictability, for instance North and South America do not 
exhibit black noise-like spectra in the new cases per million, while 
for the new deaths per million North America is the only one that 
does not exhibit a power law decay in the spectrum, the attractors 
dimensionality is the same for the new cases per million, but not 
for the new deaths per million and in the case of the persistent 
homology analysis, we found a division in two main groups: Asia 
and Africa on one side and Europe, North and South America on 
another side.

The evidence favorable to the hypothesis that attractors are near 
the onset of chaos reinforces the possibility of bifurcations, since, 
from the Oceania case, we know that bifurcations can happen and 
that they are linked to the emergence of new variants, this evidence 
implies that we do not have a dynamical self-organization to a long-
term stable equilibrium associated with an endemic virus that has 
reached a stable infection profile, in this way, healthcare authorities 
will need to be attentive to new variants and possible containment 
measures as well as adjustments in vaccination policies and drug 
discovery for dealing with these new variants.

The current work, in what regards the Oceania region, shows that 
an adaptive artificial agent with a sliding window learning is still 
robust in capturing dynamical changes in attractor stability and, 
conjointly with topological data analysis tools, may provide a 
way for healthcare authorities to monitor and anticipate possible 
bifurcations.
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