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Abstract

Objectives: Decreases in the levels of plasmalogens, have been consistently demonstrated in rhizomelic
chondrodysplasia type 1 (RCDP1), a genetic disorder of peroxisomal function. However, an in-depth lipidomics
analysis has not been undertaken. We undertook such an analysis.

Study Design: We performed a high-resolution mass spectrometric shotgun lipidomics analyses of plasma and
lymphoblasts from RCDP1 patients.

Results: We report for the first time, decrements in phosphatidylglycerol levels in plasma and lymphoblasts from
RCDP1 patients. Phosphatidylinositol and phosphatidylserine levels also were unaltered in plasma and
lymphoblasts. These data suggested that decrements in phosphatidylglycerol were due to increased catabolism,
possibly in failed cellular attempts to restore deficient plasmalogen levels. This conclusion was further supported by
supplementation of RCDP1 lymphoblasts with ether lipid plasmalogen precursors that bypass dysfunctional
peroxisomes. These precursors augmented cellular levels of plasmalogens in control and RCDP1 lymphoblasts but
only augmented phosphatidylglycerols in RCDP1 lymphoblasts.

Conclusions: Overall, our results indicate that the peroxisomal disorder, RCDP1, which is characterized by
plasmalogen deficits, also possess decrements in phosphatidylglycerol levels, thereby also compromising
mitochondrial function and pulmonary surfactant synthesis. Given the role pf phosphatidylglycerols in surfactant,
these new data potentially explain the severe respiratory compromise in RCDP children and may add a new
parameter of mitochondrial dysfunction in these patients.
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Lipidomics; High Resolution Mass Spectrometry

Introduction
Rhizomelic chondrodysplasia punctata type 1 (RCDP1) is a

peroxisome biogenesis disorder involving mutations in PEX7, the
peroxisome transporter required for the import of enzymes involved
in the synthesis of plasmalogens [1-3]. Insertion of a fatty alcohol via
an ether linkage at sn-1 of the glycerol backbone of
glycerophospholipids only occurs in peroxisomes. Subsequent
desaturation of the first carbon-carbon bond takes place in the
endoplasmic reticulum, to generate via additional enzymic reactions
both mature choline and ethanolamine plasmalogens. Deficiency in
these critical glycerophospholipids results in the RCDP1 phenotype,
which includes cataracts and shortened humeri and femurs
(rhizomelia), puntate epiphyseal calcifications (chondrodysplasia
punctate), microcephaly and dysmyelination (hypomyelination) which
result in severe growth and neurological impairments.

Plasmalogen levels are routinely monitored in RCDP patients via
gas chromatography (GC) and GC-MS assays which involve treating

plasma samples with methanol under acidic conditions to yield the
dimethylacetal derivatives of the ether linked fatty alcohols at sn-1.
This yields a picture of the total plasmalogen pool but does not
evaluate individual plasmalogens. We previously have quantitated
individual ethanolamine plasmalogens in lymphoblasts from RCDP
patients and in a murine Pex7 model of RCDP1 [4]. With this
background, we designed studies utilizing high-resolution mass
spectrometry to undertake a shotgun lipidomics analysis [5,6] of
plasma and lymphoblasts from RCDP1 patients to both more broadly
and more precisely evaluate additional lipid alterations in this severe
childhood disorder. Since it is the goal of a number of investigators to
evaluate plasmalogen precursors as potential therapeutics for
peroxisomal disorders [4,7], increasing in our knowledge base of the
lipidome in RCDP will be very valuable for future translational
research efforts. Furthermore, recognition of a peroxisomal deficit in
Alzheimer’s disease [8-10], which may underlie cerebral white matter
dysmyelination in Alzheimer’s disease [10-12], also support increasing
our understanding of the full consequences of peroxisomal deficits on
the human lipidome.
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Materials and Methods

Clinical plasma samples
Plasma samples were obtained from 3 RCDP Caucasian patients

aged 1, 5 and 6 years, while control plasma was obtained from 8
healthy Caucasian children aged 4 to 8 years. The PEX 7 mutations
included, PEX7-p.Leu292* homozygote (c.875T>A); PEX7-Leu292*/
Tyr40* (c.120C>G); and PEX7-Leu292*/Ala218Val. The clinical
studies were approved by the Lincoln Memorial University
Institutional Review Board. Plasma samples were processed as
described previously, utilizing tert-butyl methylether and methanol for
extraction of lipids [4-6,12]. The extraction solution contained
[2H8]arachidonic acid, [2H3]phytanic acid, [2H4]hexacosanoic acid,
[13C16]palmitic acid, [2H7]cholesterol sulfate, [2H5]MAG 18:1,
[13C3]DAG 36:2, [2H31]PtdEtn 34:1, [2H54]PtdEtn 28:0, [2H31]PtdCh
34:1, [2H54]PtdCh 28:0, [2H62]PtdCh 32:0, [2H31]SM 16:0, PtdSer 36:1,
[2H31]PA 34:1, [2H62]PG 32:0 and CL(56:0) as internal standards.
Extracts were dried by centrifugal vacuum evaporation and dissolved
in isopropanol : methanol : chloroform 4:2:1 containing 7.5 mM
ammonium acetate. Shotgun lipidomics were performed utilizing
high-resolution (140,000 at 200 amu) data acquisition, with sub-ppm
mass accuracy on an orbitrap mass spectrometer (Thermo Q Exactive)
with successive switching between polarity modes [5,6]. Washes
between samples with hexane/ethyl acetate (3:2) were used to
minimize ghost effects. In negative ion ESI, the anions of
ethanolamine plasmalogens, phosphatidylglycerols, phosphatidic
acids, phosphatidylinositols, phosphatidylserines, cardiolipins, and
fatty acids were quantitated and lipid identities validated by MS/MS
[5,6]. In positive ion ESI, the cations of choline plasmalogens and the
ammonium adducts of diacylglycerols were quantitated and lipid
identities validated by MS/MS [5,6].

Lymphoblast studies
Control (GM13072) and RCDP1 (GM09291; Pex7 c.870

871insCAA/875T>A or p.C290 E291insQ/L292X) lymphoblasts were

obtained from the Coriell Inst. for Medical Research. Cells were
cultured in 12 well plates as described previously [4]. For
supplementation studies, batyl alcohol and chimyl alcohol were
dissolved in ethanol (final ethanol concentration in culture was 0.2%).
For precursor labeling studies, lymphoblasts in 12 well plates were
incubated with 6 mg/100 ml media of either [13C3] glycerol or
[13C16]palmitic acid for 24 hours. Lymphoblasts were harvested by
centrifugation at 3,000 xg for 10 min and washed once with 15 ml of
cold PBS. Lipid extraction was the same as for plasma except that the
cells were sonicated [4].

Statistical analyses
Clinical data only involved 3 patients and are therefore presented as

vertical scatter plots as % of control (N=8). For the lymphoblast
studies, data are presented as % of control [(Tx mean)/(control mean)
(1 ± SQRT((Tx SD/Tx mean)2 + (control SD/control mean)2) for 6
tissue culture wells in all experiments. For the labelling studies, atom
percent excess is presented (mean ± SD) after correction for natural
isotopic abundance. Data were analyzed by 1-way ANOVA, followed
by the Tukey-Kramer test to determine differences between groups.

Results

RCDP1 plasma lipidomics
An initial shotgun lipidomics approach demonstrated the expected

dramatic decrements in both choline and ethanolamine plasmalogens
in the plasma of RCDP1 subjects Figure 1. We also monitored
unexpected decreases in the circulating levels of phosphatidylglycerols
(PG, Figure 1). While shotgun analyses cannot distinguish between
phosphatidylglycerols and bis(monoacylglycero)phosphates (BMP),
the decrements in PG 36:1 indicate that the decreases we monitored
are mainly constitute decrements the levels of phosphatidylglycerols
since BMP 36:1 levels are less than 1% of the levels of PG 36:1 in
human plasma [13].

Figure 1: Plasma levels of choline (PC) and ethanolamine (PE) plasmalogens and phosphatidylglycerols (PG). PC 38:6 (1), PC 36:4) (2), PC
34:1 (3), PC 40:6 (4), and PC 38:4 (5) all were decreased (panel PC) in RCDP I subjects (N=3). Data are presented as vertical scatter plots. PE
34:2 (6), PE 36:4 (7), PE 38:6 (8), PE 38:4 (9), and PE 40:6 (10) also were decreased in RCDP plasma (panel PE). Similarly, PG 34:0 (11), PG
34:1 (12), PG 34:2 (13), PG 36:0 (14), and PG 36:1 (15) were lower in RCDP plasma.
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Lipidomics of RCDP1 lymphoblasts
Next, we took advantage of immortalized cell lines from RCDP1

patients. Using an RCDP1 lymphoblast cell line we validated
decrements in plasmalogens and phosphatidylglycerols in cells Figure
2 similar to what we monitored in plasma samples from RCDP1
subjects Figure 1. To further explore other products of the de novo
biosynthetic pathway for phosphatidylglycerols Figure 3, we measured
phosphatidylinositols and found that the levels of these
glycerophospholipids were not decreased Figure 2. Phosphatidic acids,
which are at a critical branchpoint interconnecting multiple
glycerophospholipid pathways Figure 3 were elevated Figure 2. The
very-long-chain fatty acid (VLCFA), octacosanoic acid (26:0) also was
elevated Figure 2 in RCDP lymphoblasts, another biomarker of
peroxisomal dysfunction since this is the compartment where
metabolism of VLCFA is initiated.

Figure 2: Glycerophospholipid and very-long-chain fatty acid levels
in RCDP I lymphoblasts. The VLCFA, octacosanoic acid (OA),
phosphatidic acid (PA 34:1), and diacylglycerol (DAG 34:1) were
significantly elevated in RCDP lymphoblasts relative to control
cells. Data are presented as % of control ± SD for 6 tissue culture
wells. Phosphatidylinositols (PI 34:1) were not altered while
significant decrements in the levels of phosphatidylglycerols (PG
32:0 and PG 34:1), ethanolamine plasmalogens (PE 36:4 and PE
38:6), choline plasmalogens (PC 36:4 and PC 38:6), and cardiolipins
(CL 72:6) were measured. *, p<0.05.

Glycerophospholipid biosynthesis in lymphoblasts
To monitor the dynamics of phosphatidylglycerol synthesis, we

utilized stable isotope precursors [14]. In our first experiment, we
utilized [13C16]palmitic acid to label glycerophospholipid pools in
lymphoblasts. Incorporation into plasmalogens Figure 4, panel A was
drastically decreased in RCDP lymphoblasts compared to control
lymphoblasts, as predicted by previous labeled precursor studies [4].
In contrast the incorporation of [13C16]palmitic acid into
phosphatidylglycerols Figure 4, panel Bwas not different from
controls. [13C16]Palmitic acid incorporation into DAG 34:1 Figure 2,
panel B was increased (p<0.01) while incorporation into DAG (32:0)
was not different from control cells (data not shown).

Next, we evaluated [13C3] glycerol incorporation into lipid pools
Figure 4, panel C. With this precursor, incorporation rates as percent

of the pool were unaltered for plasmalogens (PE and PC) as well as for
phosphatidylserines. Increased incorporation into
phosphatidylglycerols was monitored in RCDP lymphoblasts.

Phosphatidyglycerol metabolism
The data that we obtained for the steady-state levels and

biosynthesis of phosphatidylglycerols led us to conclude that these
lipids might be catabolized in a failed effort to supply precursors for
plasmalogen synthesis. With this hypothesis in mind we first measured
cardiolipins (CL 72:5, CL 72:6, and CL 77:8) in lymphoblasts and
diacylglycerols (DAG 34:1, DAG 36:4, and DAG 34:1) in both
lymphoblasts and patient plasma samples. In lymphoblasts,
cardiolipins were decreased by 20 to 30% while diacylglycerols were
increased by 30 to 50% Figure 2. These data were consistent with the
initial hypothesis; however, diacylglycerols were not increased in
patient’s plasma (data not shown).

Ether lipid supplementation
To further evaluate if increased catabolism of phosphatidylglycerols

was potentially the result of failed attempts to restore plasmalogens via
the metabolism of phosphatidylglycerols to augment diacylglycerol
levels Figure 3, we investigated augmentation of plasmalogens with the
ether lipid precursors, batyl alcohol and chimyl alcohol, which bypass
peroxisomes in the synthesis of plasmalogens [7,15]. Chimyl alcohol
was the most effective in augmenting a broad range of choline
plasmalogens Figure 5, upper panel and ethanolamine plasmalogens
(data not shown) in both control and RCDP1 lymphoblasts. While
these increases in cellular plasmalogen levels did not alter
phosphatidylglycerol levels in control lymphoblasts, this treatment did
increase the levels of phosphatidylglycerols (32:0 and 32:1) in RCDP1
lymphoblasts Figure 5, lower panel. These are predominant
phosphatidylglycerols involved in surfactant synthesis in humans
[16-18].

Figure 3: Schematic of the de novo cytidine diphosphate-
diacylgycerol (CDP-DAG) biosynthetic pathway for
phosphatidylglycerols (PG). BMP, bis(monoacylglycero)phosphate;
CL, cardiolipin; DHAP, dihydroxyacetone phosphate; P, phosphate;
PA, phosphatidic acid (lysophosphatidylglycerol); PtdEtn,
phosphatidylethanolamines; PtdCh, phosphatidylcholines; PtdIn,
phosphatidylinositol; PtdSer, phosphatidylserine.
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Figure 4: Glycerophospholipid synthesis in control and RCDP I lymphoblasts. Cellular choline plasmalogens (PC), ethanolamine
plasmalogens (PE), phosphatidylglycerols (PG), diacylglycerols (DAG), and phospahtidylserines (PS) labeling with 200 μM of the precursors
[13C16]palmitic acid (panels A and B) or [13C3]glycerol (panel C), expressed as atom percent excess (APE) incorporation of stable isotope label
over 24 hours in serum free media. The (1) and (2) symbols are indicative of the number of incorporated [13C16]palmitic acid residues (panel
B) or [13C3]glycerol residues (panel C). Data are expressed as mean ± SD for 6 tissue culture wells. Labeling of plasmalogens (panel A) with
[13C16]palmitic acid was significantly decreased in RCDP cells, while that of DAG 34:1 was augmented, and labeling of phosphatidylglycerols
was not different from control cells (panel B). Labeling of plasmalogens and phosphatidylserine with [13C3]glycerol was not different between
controls and RCDP cells, while phosphatidylglycerol synthesis [PG 34:1 (1) and PG 34:1 (2)] was significantly increased in RCDP cells (panel
C). *, p<0.05 vs. control.

Discussion
A key factor that negatively impacts the quality of lifestyle and

ultimately limits longevity in RCDP1 patients is respiratory
compromise with frequent lung infections and reactive airway disease
[19,20]. In this regard, our observations of decreased
phosphatidyglycerol levels in the plasma and lymphoblasts of RDDP1
patients is of significant notation. Phosphatidylglycerols are precursors
to mitochondrial cardiolipins [21] and are essential components of
lung surfactant [22,23]. ToF-SIMS studies have demonstrated that
phosphatidylglycerols concentrate along the edges of the tubular
proteolipids that form the tubular myelin of pulmonary surfactant and
are dispersed throughout the interstitial space between the tubular
networks [24]. Of further significance are the observations that
phosphatidylglycerols regulate innate immunity against lung viral
infections and the associated inflammatory processes [23-31]. Recent
studies have also demonstrated in murine models that
phosphatidylglycerol administration is effective both for postinfection
treatment and for prophylaxis against respiratory syncytial viral
infections [32], a predominant respiratory pathogen in young
children. This combination of phosphatidylglycerol alterations in
surfactant, the innate immune response, and mitochondrial function
may contribute significantly to the incidence of respiratory infections
in RCDP1 children.

Phosphatidylglcerols are the second most abundant phospholipids
that are constituent in surfactant. The dominant phospholipid is
dipalmitoylphosphatidylcholine, a glycerophospholipid that was not
decreased in plasma or lymphoblasts from RCDP1 patients, in our
study. In contrast, we observed decreases in the levels of the major
surfactant phosphatidyglycerol PG 34:1 [17] in both plasma and
lympoblasts from RCDP1 subjects. Since we observed no decrements
in phosphatidylinositol levels nor in the incorporation of labeled

glycerol or palmitic acid into phosphatiylglycerol pools,we conclude
that the de novo CDP-DAG biosynthetic pathway [23] and acylation /
transacylation remodeling of phosphatidylglyverols [33] are
operational in RCDP1. The labeling with [13C3] glycerol also indicate
that aquaporin channels are functional in RCDP1 and do not limit
cellular access of glycerol [34].

The decreases in RCDP1 lymphoblasts of cardiolipins along with
increases in diacylglycerols and in the synthesis of DAG 34:1, a major
precursor of phosphatidylglycerols in surfactant, further suggest that
phosphatidylglycerol catabolism is accelerated in RCDP1. This
conclusion is also consistent with previous observations that lung
phosphatidylglycerols are more susceptible to degradation and
recycling than phosphatidylcholines [33]. While we did not monitor
decreases in circulating levels of diacylglycerols in RCDP1 subjects,
these measurements may be complicated by the complex role of
diacylglycerols in the synthesis and metabolism of a vast array of
glycerolipids and glycerophospholipids in multiple compartments
[23].

In toto, our data led us to hypothesize that phosphatidylglycerol
catabolism is augmented in RCDP1 in a failed metabolic attempt to
augment cellular plasmalogens via increasing the diacylglycerol
precursor pool. To evaluate this hypothesis we investigated
augmentation of cellular plasmalogens in lymphoblasts incubated with
ether lipid precursors that bypass peroxisomes to augment cellular
plasmalogen levels. These data suggest that ether lipid
supplementation to augment plasmalogens [7,15] in RCDP1 patients
also may augment phosphatidylglycerols. If this proves to be the case,
then improved quality of lifestyle and longevity, relative to lung
infections, may be a significant clinical benefit for RCDP children.
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