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ABSTRACT

Global climate change has developed into one of the most complex problems facing mankind in the current
scenario. This change has an irrefutable disturbance on the stability of natural and engineered slopes, including
landslides. In mountainous terrain such as the Himalayas, landslides are among the most harmful hazards. Most
landslides occur under the influence of earthquakes or rainfall, and they are often among the most devastating
natural hazards. Increasing awareness of landslides’ socioeconomic impacts has attracted global attention to landslide
studies. A landslide risk assessment in Himachal Pradesh’s Kinnaur region was conducted using remote sensing
and Geographic Information Systems (GIS). For the Landslide Susceptibility Mapping, a hybrid approach is used.
Using a hybrid approach, weighted overlay is combined with Shannon’s entropy, an eminent technique based on
evidence. To prepare a susceptibility map, eight landslide-related criteria are used in conjunction with the inventory
of landslides that contained recent and historical landslides. The validation results show that the models derived
using the following approach have the highest prediction capability.
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Abbreviations: RS: Remote Sensing; GIS: Geographical Information System; LSM: Landslide Susceptibility
Mapping; IMO: Indian Meteorological Organization; ETM: Enhance Thematic Mapper; DEM: Digital Elevation
Model; SRTM-Shuttle Radar Topography Mission; LULC: Land Use/Land Cover; ROC: Receiver Operating
Characteristics.

INTRODUCTION material, and environmental losses have been caused by landslides

when they occur in proximity to human habitation because of

In geophysics and climate science, landslides are defined as an the high exposure to landslide risk. Unsustainable construction

rth’ rf: movemen hysical phenomenon . )
carth’s surface movement due to a geophysical phenomeno activities in vulnerable zones, deforestation for urban boundary

or a climatic change. Typically, it involves soil and rock mass expansion, and inadequate slope management will accentuate

displacement along one or more slip surfaces. Among Asian the number of people exposed to the risk of landslides. In view of

countries, South Asian nations suffer the greatest fatalities, and escalating climate risk, it is imperative to adopt suitable adaptation

even among South Asian countries, India is one of the worst strategies for landslides. In understanding and forecasting probable
future landslides, Landslide Susceptibility Maps (LSMs) can be an

effective tool [5-7]. Landslides frequently occur concurrently with

devastated by landslides [1]. Impacts from extreme-weather events
hit the least developed countries most vigorously, as they are
susceptible to the damaging repercussions of a hazard, have a lower

other natural disasters such as wildfires and floods, rendering them

coping capacity, and may need more time to rebuild and recover. L . L .
ping capacity, Y a significant concern in hazard mitigation and comprehensive

The Indian Himalayan belt has been persistently threatened by planning. LSMs depict areas prone to landslides event in the future

landslides of varying intensities throughout history [2-4]. Human,
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through associating some of the major aspects that cause landslides
by historical slope failure distributions, making it possible to
predict where they will occur in the future [8-12]. For these reasons,
the production of LSM early in the landslide assessment process
plays a crucial role in the safe planning of economic activities, such
as urbanization and building structures.

In contrast, no standard procedures for producing maps showing
landslide susceptibility exist. Landslide risk management can
thus be achieved through providing risk executives with timely
and precise information about landslides [13-19]. Because of the
complex nature of landslides, predicting their location in advance
is challenging. In addition to providing information regarding
landslide hazards, LSM also indicates whether landslides will occur
within a particular period.

This study aims to determine a universal degree measure of
inconclusiveness associated with fuzzy sets in the defined
circumstances [20-26]. A new functional defined of the class of
generalized characteristic functions (fuzzy sets) is introduced, called
“entropy”, which does not use probabilistic concepts. This quantity
has a very different meaning than classical entropy because it
doesn’t require a probabilistic picture to be defined [27-34]. This
measure gives a symbol of the “indefiniteness” of the situation.
The definition of probability isn’t agreed upon, even though there
is a mathematically defined theory of probability. Understanding
susceptible regions would be possible with effective LSMs [35-40].
GIS-based tools are developed and used to create susceptibility
maps to help planners in understanding of landslide hazards.
There are three general types of approaches: subjective, objective,
and Shannon entropy.

Study area

Kinnaur district is one of Himachal Pradesh’s 12 administrative
districts that have been given the special status of a tribal district
under Schedule 5 of the Indian constitution. Kinnaur can be
found between 77°45" and 79°00’35” East longitudes and between
31°05’50” and 32°05°15” north latitudes. This area is surrounded by
Tibet and Uttaranchal in the east, Shimla district in the southwest,
Kullu district in the northwest, and Lahaul-Spiti district in the
northeast [41-47]. This district has three high mountain ranges,
namely the Greater Himalayas, Zanskar, and Dhauladhar, which
encompasses the valleys of Baspa, Sutlej, Spiti and their tributaries.
Kinnaur’s topography ranges in altitude from 1600 meters to
6816 meters. Forests, orchards, fields, and picturesque hamlets are
scattered along the mountainsides. Shivlinga is located at Kinner
Kailash’s peak, an extremely religious place for Hinduism. 1989
was the year that this beautiful district was opened to outsiders
[48-53]. A portion of the old Hindustan-Tibet Road runs along the
banks of the Sutlej River through the Kinnaur valley until it arrives
at the Shipki La Pass, which leads to Tibet.

MATERIALS AND METHODS

The susceptibility map of the Kinnaur region was determined by
utilizing the landslide-related criteria outlined in the table above.
Input maps of the roads, rivers, and drainage systems were obtained
from the study area’s topographic maps (1:50,000), while geology
maps were obtained from geological survey of India. Additionally,
the aspect and slope criteria derived using the Shuttle Radar
Topography Mission (SRTM) 30 m Digital Elevation Model (DEM)
using ArcGIS version 10.4. Images with 30 m spatial resolution
of Landsat ETM+ satellites were used to create land use/cover
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maps [54-59]. A mean annual rainfall map was created in ArcGIS
using kriging interpolation techniques and data from the Indian
Meteorological Organization (IMO). Additionally, the inventory of
landslides polygons obtained from the Geological Survey of India
containing 1190 recent and historical landslide polygons (Table 1
and Figures 1-7).

Table 1: Description of criteria and data source.

Criteria Data source
Slope 30 m, SRTM DEM
Aspect 30 m, SRTM DEM
Rivers 1:50,000 Topo-map
Altitude SRTM
Rainfall 30 years, IMO data

Transport network 1:50,000, Topo-map

Geology 1:100,000, Geo-map

Land use 30 m, Landsat Images

Altitude k

Akiisch | meier]
e

Figure 1: Altitude of the Kinnaur region.

Gaalogy ]

Figure 2: Geology of the Kinnaur region. Note: (==) Palacoproterozoic,
(==) Proterozoic, (==) Tertiary, (==) Neoproterozoic, (==) Ordovician-
Silurian, (==) Triassic-Jurassic, (==) Cambrian, (==) Palaeozoic, (=)
Neoproterozoic-Cambrian, (==) Carboniferrous.
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Figure 3: Aspect of the Kinnaur region. Note: (=) North (-1), (=) North
(-1), (=) Northeast (0-22.5), ( ) East (67.5-112.5), (=) Southeast (112.5-
157.5), () South (157.5-202.5), (=) Southwest (202.5-247.5), (w=) West
(247.5-292.5), (=) Northwest (292.5-337.5), (=) North (337.5-360).

N
Distance from the Roads k

SLOPE A

Figure 4: Slope degree value of the Kinnaur region.

Figure 7: Landuse/Landcover of the Kinnaur region. Note: (=) Water,
(=) Trees, () Grass, () Flooded vegetation, () Crops, ( ) Scrub/

shrub, (m) Built Area, () Bare ground, ( ) Snow.

]
Distance from the Rivers h

Figure 5: Distance from rivers. Note: (—) River, ( =) Landslides.
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Shannon’s entropy approach

A system’s entropy can be described as disorder, instability,
imbalance or uncertainty. According to Boltzmann’s principle,
entropy in a system is proportional to its condition [60-64]. As a
thermodynamic measure, this correspondence describes the status
of a system.

Using this method, the dissimilarity or diversity of each factor in
the environment determines whether it has the potential to cause

a landslide.

The entropy of landslides measures the extent to which different
factors cause landslides; the higher the entropy index, the stronger
the influence of the factor.

This approach indicates the extent of each factors causing the
landslide; the greater the entropy index, the stronger the influence,
and the lower the entropy index, the weaker the landslide effect.

The index system provides additional entropy through several
important factors. Therefore, objectives weights can be calculated
based on entropy.

1

Positiveeffect =40.5| 1—cos 2" Lmin Xow < X=X,
Xmac _Xmin
X = Xoin
0
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A positive effect of mean annual rainfall and drainage density on
the probability of landslide occurrence is predicted by equation (1).

There is a positive relationship between the mean annual rainfall
and drainage density and the probability of landslides occurring
and this relationship is predicted by the equation (1).

In other words, the higher the criterion value, the bigger the
probability of a landslides. Alternatively, some other criteria, such
as the proximity to roads, proximity to the rivers, etc. apply reverse
conditions, and the equation 2 is best representation of it [65-69].

In the next step, the landslide shanon’s entropy matrix (R) is created
by combining (m) landslide events sample with (n) geo-data layers:

rl,1 r,2 ... rln
r2,1 r2,2 .. r2,n

The next step is to prepare the entropy matrix by combining the
previously landslide samples with the n geo-data layers.

Therefore, Shannon entropy can be defined as follows:
E, =—k) Pi,jInpi,j
i=1

In this equation, Ej is the entropy value of the jth landslide, pi,j is
its value in the jth criteria, and k is a positive constant,

Units of measure are determined essentially by the following:
K=nm)"
Taking m as the number of landslides that have occurred, we can

define a normalized decision matrix pi,j for each landslide criteria
as follows:

o

s |2

VLN,

i=

In this index system, weights indicate the role the factors play
in the synthesis assessment, and higher values indicate a greater
importance for that factor.

viJ
W=
i=1

Taking Wj as the weight of the jth geo-data layer and Vj as the value
of the jth layer, Vj is defined as:

v; =1—Ej

Hybrid Landslide Susceptibility Mapping Model

T In terms of landslide susceptibility mapping, the proposed hybrid
model is as follows:

J Remote Sens GIS, Vol. 11 Iss. 11 No: 1000261

OPEN 8ACCESS Freely available online

S:iwi(@Xi

i=1

Assume that S is a measure of the susceptibility to landslides, Wi
is the weight of each criterion, and Xi is the standardized criteria

for landslides.

RESULTS AND DISCUSSSION

Landslide susceptibility mapping

To analyze the landslides susceptibility, Shannon entropy method
was used. In the present study, the susceptibility of landslides
was assessed by calculating the relationship between landslides
occurrence and these eight conditioning factors using Shannon
entropy method (Supplementary Table 1).

Supplementary Table 1, Shannon’s entropy has an aspect weight of
0.158148 that is calculated based on the equation no.6. Similarly,
Aspect weight of Shannon’s entropy is 0.158148 which is higher
than the slope angle indicates that, the direction of slope is one
of the major factors for landslide susceptibility mapping in the
Kinnaur district [70-73]. For Geology, Altitude, Proximity to river,
Proximity to roads, Landuse/Land Cover and Rainfall weights
are 0.153516855, 0.126592428, 0.149489064, 0.148656291,
0.127152285, and 0.122543344 respectively (Figure 8).

Landslide Susceptibility Map ™

Figure 8: Landslide susceptibility of the Kinnaur region. Note: (- )

Unlikely, (=) Moderate to low, (==) High, (mm) Severe to very high.

Based on the weighted average, it can be concluded that factors
such as geology, aspect, proximity to the river and proximity to the
roads are the major factors in landslide susceptibility mapping. It is
difficult for locals to access water because of the debris slipping down
the slopes and blocking the river channel [74-76]. Subsequently,
with the aim of prepare the final map of landslide susceptibility,
On the basis of natural breaks, we combined weighted products of
secondarily parametric maps.

Validation of landslide susceptibility models

In statistical theory, the Receiver operating characteristics curve is a
classic method for evaluating performance to examine susceptibility
maps. As the classifier threshold changes, the ROC curve, which
has a value range of [0,1], describes the process of classifier
performance. As seen in ROC curve, the model’s sensitivity is
plotted against 1—specificity.
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Based on these values, negative and positive observations in the
validation sample are correctly differentiated by the model. Signal
sensitivity is represented by every point on the curve [76-79]. This
graph shows a horizontal axis indicating False Positive Rate (FPR)
specifity compared to a vertical axis showing True Positive Rate
(TPR) sensitivity. The prediction rate could be used to assess the
prediction capability of the landslide models [8]. The ROC shows
an accuracy of 88.23%. In analyzing the AUC results, we observed
that the produced map exhibits a high level of accuracy (Figure 9).

Area Under Curve (AUC) of Frequency Ratio
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Figure 9: Area under curve of frequency ratio.

Human life and property are at risk from landslides, so mapping
landslides’ susceptibility is an important and preliminary step to
preventing them. A landslide susceptibility map and an evaluation of
contributing factors that trigger the landslides were produced using
Shannon’s entropy model. In this study, Shannon entropy model
was applied to develop a map of landslides susceptibility, and cause-
effect relationships were analyzed in order to determine the cause
of the landslides. In the modelling, eight landslide conditioning
factors were taken into account in this modelling. Landslide
conditioning factors are added with geographic information
systems. A ROC curve was developed using the landslide inventory
datasets acquired from geological survey of India to calculate
Shannon’s entropy for the block entry. Based on the AUC curve,
the result showed 88.23% accuracy. It has been divided into four
classes: moderate to low, high, severe and very high. The area of
each class falls under 252.20799 square kilometers, 1810.1757
square kilometers, 3826.0683 square kilometers, and 513.4724
square kilometers, respectively. The susceptibility map shows that
Nichar tehsil falls within the unlikely and moderate landslide risk
categories. Tehsil Sangla is most vulnerable to landslides and has
a significant risk. Management of disasters through forecasting
and monitoring may help in lessening the vulnerability of the
communities.

CONCLUSION

There is an urgent exigency for landslide risk management at
various spatio-temporal scales to map the landslide hazard to deal
with its future occurrences. Human losses can be reduced by taking
timely precautions and detecting early warning signs. It enables
planners to make better decisions regarding further mitigation
of landslide effects. A better understanding of the results of this
study will provide engineers and planners with better methods for
managing and mitigating landslides in the study area.
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