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Abstract

This work focuses on the sub-Cauchy problem for linear elasticity in two dimentional case. Solving such a problem 
may be formulated as follows: given the displacement and one component of the traction in a given part of the 
boundary of the elastic body, reconstruct the displacement field in all the domain. Author propose herein, an iterative 
method borrowed from the domain decomposition communauty to solve the sub-Cauchy problem. Numerical results 
highlight the efficiency of the proposed method.
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Introduction
Many inverse problems in linear elasticity are defined by 

overdetermined boundary conditions. One can think to the 
reconstruction of buried flaws such as cracks, voids or inhomogeneities, 
identification of constitutive law, data completion (that is the recovery 
of boundary conditions on an inaccessible part of the body boundary) 
[1].

All the above inverse problems have in common to be defined by 
overspecified boundary conditions namely the normal stress and the 
displacement on a part of the boundary which correspond to Cauchy 
data. Many papers treated this problem, from the numerical view point, 
this last decade [2-4].

Author would like to mention the work by Bourgeois [5] who 
applied the Lions-quasi-reversibility method to the data completion. 
This method leads to a direct inversion process.

Many authors resort to iterative methods based on minimising 
a least-square type error functional, [6-8]. Marin [9] would like to 
mention the minimization of an energy-like gap functional in ref. [10] 
and domain decomposition like method in ref. [11] which are close to 
what we develop in this work.

Hereafter, Author are concerned by a partially overdetermined 
boundary conditions. In fact,on a part of the boundary of the domain 
partially overdetermined boundary data are prescribed, namely one 
component of the traction and the displacement field. Following ref. 
[12] author build an energy-gap error functional to recover the lacking 
boundary data. Author emphasise on the shear stress reconstruction, 
on the part of boundary where the partial-data is prescribed.

Formulation of Sub-Cauchy Problem as Steklov 
Poincare Operator

The inverse problem under consideration concerns the recovery of 
lacking boundary data from the knowledge of partially overdetermined 
boundary elastic data.

The problem is formulated mathematically as follows : Let Ω be a 
bounded domain in 2, the boundary Γ=∂Ω is split into Γc and Γi having 
both non vanishing measure =c iΓ ∩Γ ∅ . Given the displacement U 
and the normal component of surface traction Φ.n on Γc:

( ) = 0 ,
( ( ). ). = . ,

= .
c

c

div u in
u n n n on

u U on

σ
σ

Ω
 Φ Γ
 Γ

  (1)

where σ = λTrε(u)+2µε (u), ε =1/2(∇u+∇uT) and λ, µ are the Lamé 
coefficients related to Young’s modulus E and the Poisson ratio v via: 

= =
2(1 ) (1 2 )(1 )

E Eνµ λ
ν ν ν+ − +

Our aim is then to reconstruct (σ (u).n).τ on Γc and both the 
displacement and traction. To our knowledge, there are no theoretical 
studies (existence and uniqueness) of this problem despite its great 
importance in applications. In this paper author treat this problem 
numerically by solving a data completion problem.

The decomposition of the Cauchy problem (1) is formulated 
through an unknown function η as follows:
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  (2)

Where η is the virtual control and u is chosen so that uD and uN
adjust in the best possible on Ω. The solution uD and uN are a function 
of η ( = ( )D Du u η  and = ( )N Nu u η ).

To express the problem in the framework of virtual control, we 
introduce the cost functional:

( ) = ( ) : ( )D N D NJ u u u u dη σ ε
Ω

− − Ω∫                (3)

and consider the minimization problem: 

1
2 ( )

( )inf
H i

J
η

η
∈ Γ

					  (4)
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The solutions uD and uN can be written as: 
0 * 0 *= =D D D N N Nu u u u u u+ +

Where ui
0 depends on the data U and Φ.n where as ui

* depends on 
η as follows: 

* 0

* * 0 0

* 0

( ) = 0 , ( ) = 0 ,
( ) = 0 , ( ) = ,

= . = 0 .
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	               (5)

Similary, author decompose uN. 
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The solution of the problem (4) is recovered if: 

( ). = ( ).D N iu n u n onσ σ Γ 				                    (7)

With this partition, condition 7 leads to the boundary equation 
* * 0 0( ). ( ). = ( ). ( ).D N N D iu n u n u n u n onσ σ σ σ− − Γ 		                 (8)

Author introduce the Steklov Poincaré operator 
* *= ( ). ( ).D N iS u n u n onη σ σ− Γ

Author define *= ( ).D DS u nη σ  and *= ( ).N NS u nη σ .

Author can write the equation (8) according to the Steklov Poincaré 
operator: 

= iS onη ξ Γ

where 0 0= ( ( ). ( ). )D Nu n u nξ σ σ− − .

This operator, borrowed from the domain decomposition 
community, is widely used in ref. [13].

There are several ways to solve this linear system of equations. 
Here author use an iterative preconditioned gradient algorithm, which 
appears to be very efficient. Each iteration of the algorithm is written 

1= ( ) ( ),DS Sη η ρ η ξ−+ −

where ρ is a relaxation coefficient and SD is the preconditioning 
operator.

Thus each iteration requires to compute Sη  by solving the two 
problems ?? and to solve the system =DS Sχ η . This is achieved by 
solving the following problem: 

( ) = 0 ,
( ). = ,
= 0 .

i

c

div w in
w n S on

w on

σ
σ η

Ω
 Γ
 Γ

			   	               (9)

where χ = w on Γi.

Now, author propose an algorithm to approximately solve the sub-
Cauchy problem:

Algorithm
1. Choose arbitrary η

2. Solve problems (PD) and (PN).

3. solve problem (9). 

4. Let η= η+ρ w

5. Go back to the first step until the stopping criteria  ||uD – uN || ≤ ε 
is reached. (ε is a given tolerance level)

Numerical Results and Discussion
The purpose of this section is to present the numerical 

implementation of the boundary data recovery process described 
above.

The numerical implementation is run under FreeFem software 
[14] based on Finite Element Method. All through this section, 
author consider an isotropic linear elastic material (Steel XC10 to 20° 
temperature) characterised by the poisson coefficient = 0.29ν  and 
Young’s modulus E = 216 GPa.

Author are concerned by a two dimentional framework 
corresponding to a square hole domain.

The partially overspecified boundary data is a synthetic one, 
obtained through the resolution of the following forward problem:

0

0

0

( ) = 0 ,
( ). = ( ). ,

= .
c

i

div u in
u n T n on

u T on

σ
σ σ

Ω
 Γ
 Γ

where 1 1= ( ( ), ( ))T Re Im
z a z a− −

, =z x iy+ , = 1.8a , = c i∂Ω Γ ∪Γ  and iΓ  

being the inner circle.

Notice that we are dealing with a “rough” case, insofar as, the 
inffered data, are induced by a “near singular” data. The trials used in 
the litterature come usually from analytical reference solutions. 

Preliminary Numerical Test
Our trial concerns the resolution of the sub-Cauchy problem in the 

following context: We consider a square hole domain: rectangle size: 
(10 * 20) with inner circle of radius R=2. The internal circle plays the 
role of the boundary Γi  and the Cauchy data are donated in the external 
boundary Γc.

Author choose ε = 10-2 in the stopping criteria computation are 
carried out with “un-noisy” data. Figures 1-3 show the reconstructed 
displacement and traction on the inner boundary, whereas Figure 
4 illustrate the reconstruction of the shear stress in Γc. Note that the 
reconstruction is quite nice in Γi and in good agreement with exact for 
the shear stress.

Figure 1. Mesh of square hole domain.

Figure 1: Mesh of square hole domain.



Page 3 of 6

Citation: Abda AB, Khalfallah S (2016) Lacking Data Recovery via Partially Overdetermined Boundary Conditions in Linear Elasticity. J Appl Mech 
Eng 5: 202. doi:10.4172/2168-9873.1000202

Volume 5 • Issue 2 • 1000202
J Appl Mech Eng
ISSN:2168-9873 JAME, an open access journal 

Sensitivity to the Thickness
The following numerical trials are devoted to the influence of the 

radius of the hole on the reconstructed data.

The results are summerrized in the Table 1. As expected the 

computed sub-Cauchy problem solution is better when the distance 
between Γc and Γi is lower. To confirm the results, Figure 5 where 
author present the result for the first component of displacement on Γi 

The same remark is true when we zoom on the shear stress. 
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Figure  2: Exact and numerical displacement (left: first component, right: second component) on iΓ .
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Figure 3: Exact and numerical traction (left: first component, right: second component) on iΓ .
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Figure 4: Exact and reconstructed shear stress on  Γc .
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Radius  R=2  R=4  R=6  R=8  

2 ( )
|| ||D ex L

u u
Ω

−
  

2.029  0.27  0.096  0.055  

2 2( ) ( )
|| || / || ||D ex exL L

u u u
Ω Ω

−
  

0.45  0.098 0.043 0.03 

2 ( )
|| ( ( ). ). ( ( ). ). ||D ex L c

u n u nσ τ σ τ
Γ

−
  

8.4*10 2−   7,01*10  
24.41*10−

 
38.31*10−

Table 1: Error between the exact and numerical solution for different radius defined iΓ .
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Figure 5: Exact and numerical first component of displacements for different radius: left-top = 2R , right-top: = 6R , left-bottom: = 4R  and right-bottom: = 8R .
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Figure  6: Exact and reconstruted first component of displacement from noisy Cauchy data (4%). Left: The solution in the exact domain. Right: The solution 

in the extended domain (tolerance 2= 2*10ε − ).
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Extended Domain
The following numerical experiments are inspired by Hecht [14]. In 

ref. [14], the authors resort to un extended domain method to illustrate 
its regularisation effect on their numerical data completion procedure. 
Their study was conducted in the framework of Laplace equation.

To our opinion, the proposed method may be used in many practical 
situations, one can think to the data completion on rough boundary in 
this situation it is worthfull to extend the domain to a smooth one and 
to deduce the boundary conditions on the rough boundary.

This trick will avoid the meshing difficulties for instance.

Another possible application may concern a void detection: If one 
has an apriori knowledge on the void location, the computation may be 
done on an extended domain, the void being detected by level lines of 
the displacement field [15] (for the Laplace equation).

Our concern here is to illustrate the deblurring effect of this domain 
extension procedure.

Of course, it currently happens in practice that the data (on Γc) suffer 
from erroneous measurements, the following numerical experiments 
illustrates the deblurring effect of the extended domain method.

We consider a random noise of 4% added to the exact data as 
follows:

= . = .U U r n n rα β+ Φ Φ +

where (α , β ) denotes the noise level relative to ( 2 ( )L c
U

Γ
  , 2 ( )

.
L c

nφ
Γ

  ), 
and r is a random function generated by Freefem.

The boundary Γi is very close to the complete boundary and is then 
exposed to the noise contamination coming from Γc .The possibility of 
extending domain by a fictitious incomplete bounday can correct this 
contamination.

The exact domain is defined square by rectangle size (10 * 20) with 
hole of radius R=6 while the extended field is defined by the same 
rectangle, but with a hole of radius R=4.

Figures 6 and 7 show the reconstructed displacement for the exact 
and extended domain. Note that the solution computed in the real 
domain suffers from hard oscillations. Those obtained in the extended 
domain seem satisfactory. 

Conclusion
In this work the reconstruction of lacking boundary data on a 

part of the boundary of a body from partially-overspecified boundary 
conditions on an other part has been investigated numerically.

A domain decomposition like method has been given to describe 
the reconstruction process. The numerical investigation has been 
conducted on a “rough” configuration (i.e. the data to be recovered 
is not extendable on a divergence free stress field outside the domain 
namely within the hole), it uses FEM.

The numerical section highlights the accuracy of the inverse 
procedure, as well as the robustness of the inversion process to noisy 
data as well as its ability to deblur noise.
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