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Cancer
The word itself seems to hold a dark power over modern 

humankind. Nearly every one of us has come in close proximity to this 
life-threatening disease. In recent years, researchers have produced 
a body of work that has given us a clearer (albeit more complicated) 
picture of how cancer comes to be, how it develops, and how it can 
be treated. The roles of genetics (in the form of single nucleotide 
polymorphisms or SNPs) [1], epigenetics [2], miRNA [3], copy 
number variation [4], chromatin structure [5], and protein biomarkers 
[6] in cancer have been shown. While great scientific advances have
been made in the understanding and treatment of this disease in the
last 50 years, we still do not have a clear understanding of the ‘how’
and ‘why’. Given a set of initial conditions in the body defined by
genetics, lifestyle, environmental exposure, etc., cancer begins and
proceeds to develop through an evolutionary process. This results in
all cancers having unique characteristics [7]. Clearly, cancer is a multi-
dimensional problem for which we have an enormous amount of data
now. Gaining knowledge from the existing data, however, is a non-
trivial task.

In recent years, bioinformatics and computational biology have 
made a variety of contributions to disease analysis using existing data 
in an attempt to increase our understanding of many diseases. Popular 
topics include the discovery, prediction, and analysis of genes related 
to disease [8], statistical analysis of SNPs and disease [9], the prediction 
and discovery of new drug targets [10], the development of the disease 
ontology and its application to the human genome [11,12], the analysis 
of protein-protein interaction networks as they relate to disease [13], 
and many others. Of particular interest is the development of ‘disease 
networks’ [14,15], which are in most cases bipartite graphs describing 
disease-disease as well as disease-gene relationships. In the projection 
of the disease-gene network that describes disease-disease relationships 
(Figure 1), nodes indicate diseases and the edge between two nodes 
represents how these diseases are related. These edges may signify one 
or more shared genes, metabolic pathways, miRNAs, or a number 
of other data types. The disease network reveals the interconnected 
nature of various diseases, which begs the question; can we gain new 
knowledge of a disease such as cancer by studying ‘connected’, non-
cancer diseases? Many diseases including obesity [16,17], various 
infections [18], diabetes [19], and possibly even psychological stress 
[20] have been reported some relationship to cancer. Often the
relationship type is unknown or partially known, which indicates that
a deeper understanding of these relationships is needed. However,
those relationships have not been explored as a whole, but rather as
individual links.

Due to the complicated nature of many diseases, which may involve 
the failure of multiple levels of biological function including DNA 
repair, gene regulation, epigenetic and histone modifications, metabolic 
pathways etc., elucidation of disease relationships requires a systematic 

and computational solution. Though there may be a plethora of data 
available to quantify this disease problem, the data itself does nothing 
for us if we cannot turn that data into knowledge (a similar problem 
arose after the sequencing of the human genome). Merely combining 
sources of data is not sufficient. We must identify patterns within the 
data, which is manually infeasible when the number of data points and 
characteristics to be compared is large. Clearer understanding could 
be gained by finding, among all attributes of a relationship, those that 
characterize it most accurately. Several existing machine learning 
algorithms can help achieve this including multiple instance learning 
[21], positive/unlabeled (PU) learning [22], Bayesian inference [23], 
the alternating decision tree, or ADTree [24], and others. In the past 
we have used the ADTree algorithm to analyze methylation patterns on 
DNA [25] and to predict DNA-binding proteins [26]. In both cases, this 
algorithm helped us to understand what characteristics have the most 
influence on determining the class to which the examples belonged. A 
similar method of ‘rule discovery’ is needed in the case of the disease 

Figure 1: A small example of a projection of the disease-gene bipartite graph 
that describes disease-disease relationships. Nodes indicate diseases; edges 
between nodes represent disease relationships. Edges may signify one or more 
genes, metabolic pathways, miRNAs, or a number of other data types.
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network. Of course, the rules may be heavily dependent upon the types 
of disease in question (i.e. metabolic, infectious, autoimmune and 
genetic). By analyzing a combination of available genetic, epigenetic, 
and proteomic data, one will be able to use these algorithms to enrich 
the edges between cancer and other diseases in the disease network, as 
well as to predict new edges within disease clusters.

The key to understanding the disease network is to enrich the value 
of existing edges and to infer new ones based on this enriched value. 
There is a wealth of information concerning diseases, metabolism, 
gene ontology, drug targets, miRNA, protein-protein interaction, gene 
regulation, and gene expression. Unfortunately, there are large areas of 
missing and overlapping data as well as many false positives and even 
more false negatives. This makes it difficult to assemble the puzzle and 
gain knowledge. One can use algorithms such as ADTree which can 
filter through noisy data to find the most informative and conserved 
characteristics of a disease-disease relationship. Cancer A and non-
cancer disease B, though they may not share a causal gene(s) according 
to OMIM, but may be related at some distance through a common 
metabolic pathway, co-regulating transcription factor, or negative 
regulation by one or more miRNAs. Any of these three could be a 
false positive association. When analyzed together along with other 
available data, however, a more complete biological process comes into 
focus and the noise problem can be mitigated. The ADTree allows us 
to easily visualize which biological processes contribute most to the 
disease relationship, eliminating the ‘black box’ effect of many machine 
learning algorithms. 

Overall, we believe cancer is both unique and related to other 
diseases. Study of all diseases as a network system can generate many 
interesting results. For example; drug of related non-cancer diseases 
may help treat the side effects of cancer drugs; the complex relationship 
between bacteria and cancer: bacteria can be both beneficial and 
cancer-causing, can provide new ideas about cancer treatment; 
mechanisms and tissue-specificity of non-cancer diseases may prime 
the cellular environment for metastasis. We expect in the near future, 
with enormous genotype and phenotype data available for all diseases, 
there will be a novel view point for cancer research that will emerge 
from the disease network study. 
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