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Abstract
In recent years, there has been significant research in regard to the efficacy of ketamine in regards to treating 

Complex Regional Pain Syndrome (CRPS) and Major Depressive Disorder (MDD). Many patients have had substantial 
symptomatic relief; however, not all patients have had positive results. This has prompted current research with 
evidence to suggest certain biomarkers exist that would infer which patients will/will not respond to ketamine treatment. 
Current biomarkers of interest include D-Serine (D-Ser) and magnesium, which will be discussed. Whether or not 
D-Ser and/or magnesium levels should be checked and possibly dictate therapy is an area of future research. It is also
possible that downstream metabolites of ketamine are the key to successful therapy.
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Complex Regional Pain Syndrome (CRPS) and Major Depressive 
Disorder (MDD) are two medical illnesses that may be severely 
debilitating, have an increased incidence of suicide, and are often 
resistant to conventional treatments [1]. New research over the past 
decade regarding the use of ketamine to treat both these diseases has 
been promising. Ketamine appears to play a role in neuroplasticity and 
thus may have long-term beneficial effects. It is not entirely clear how 
this occurs and which patients will benefit from this pharmaceutical 
therapy. However, data from ongoing pharmacodynamic and 
pharmacogenetic studies suggest that there are biomarkers that would 
infer which patients will/will not respond to ketamine treatment. 

CRPS is thought to be the result of injury to the autonomic, central, 
and peripheral nervous systems. It presents as pain affecting one or 
multiple limbs that does not follow a dermatome distribution and is 
out of proportion to the inciting injury. The pain may be so severe it 
can lead to disability. The affected limb(s) are also afflicted with intense 
changes in skin color, texture, and/or temperature. At times there is 
neither confirmed nor obvious nerve injury and this is referred to as 
CRPS-I (previously Reflex Sympathetic Dystrophy Syndrome, or RSD). 
CRPS-II describes patients who develop CRPS after clearly sustaining 
nerve damage. However, recent studies have uncovered nerve damage 
in patients previously classified as CRPS-I, suggesting that there may 
not be a distinction after all [2]. 

The pain process of CRPS is multifactorial and conventional 
treatment is thus multimodal. Common therapies include cognitive 
behavioral therapy, neuropathic pain medications including pregabalin 
and gabapentin, physical therapy and occupational therapy, and opioids 
including methadone. Some forms of CRPS have sympathetically 
mediated pain and these patients may have significant symptomatic 
relief from sympathetic nerve blocks. For refractory cases, spinal cord 
stimulators and intrathecal medications including ziconotide have 
been implemented with variable success rates. Likewise, ketamine 
infusions for severe cases of CRPS have had mixed results [3-5].

MDD may also be challenging to treat and ketamine is proving to 
have therapeutic value for this disease as well. Similar to CRPS, MDD 
is also a multifactorial disease that has psychological, environmental, 
and genetic components. The criteria for diagnosis of MDD involves a 
“distinct change of mood, characterized by sadness or irritability and 
accompanied by at least several psychophysiological changes, such as 
disturbances in sleep, appetite, or sexual desire; constipation; loss of the 
ability to experience pleasure in work or with friends; crying; suicidal 

thoughts; and slowing of speech and action. These changes must last a 
minimum of 2 weeks and interfere considerably with work and family 
relations” [6]. Treatment options include antidepressant medications, 
cognitive behavioral therapy, and interpersonal therapy. Herbal 
medications, such as St. John’s Wart, have shown similar efficacy as 
compared to placebo when treating major and minor depression. 
Refractory MDD therapy includes electroconvulsive therapy [6].

The pathophysiology of CRPS and MDD is not always clear. 
Likewise, there are many unanswered questions in regards to the 
effects of ketamine, a drug that has been in clinical practice since 1970. 
Ketamine is a phencyclidine (PCP) derivative that was developed 
as an anesthetic agent. Until recent years, ketamine’s use has been 
mostly reserved as an adjunct for anesthesia. At anesthetic doses, it 
is well known to act as a very potent analgesic, but also produces a 
cataleptic-like state. Furthermore, recent studies suggest that chronic 
exposure to ketamine may result in upregulation of N-methyl-D-
aspartate (NMDA) receptors on neurons and this neuroplasticity may 
lead to a dramatic increase in calcium influx when the receptors are 
subsequently activated. These high intracellular levels of calcium may 
lead to neuronal damage or even cell death [7].

A number of recent clinical trials of ketamine have utilized infusions 
of sub-anesthetic doses in the treatment of CRPS and treatment-resistant 
MDD, with the added benefit of reducing psychotropic adverse effects 
as well confining the absolute exposure to ketamine to finite periods of 
time. In 2005, 40 patients with CRPS received an outpatient ten-day 
low dose ketamine infusion with a maximum infusion rate of 20 mg/hr. 
Twenty-five patients received greater than or equal to 70% reduction 
in pain at six weeks following treatment [3]. No adverse psychotropic 
effects were seen during this study. In 2010, 16 patients with CRPS 
were found to have more profound pain relief after a 5-day inpatient 
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ketamine infusion (with maximum infusion rates 40 mg/hr, which was 
also well tolerated). A majority of patients experienced “meaningful 
pain relief” at 6 months following the infusion; however, 37% of patients 
denied significant pain reduction [4,5]. Current research also suggests 
that subanesthetic ketamine may also have a powerful antidepressant 
effect. Specifically in regards to patients with treatment-resistant MDD, 
a single 40 min iv infusion of ketamine (0.5 mg/kg) produces a rapid 
(within 4 hours) antidepressant response in a majority of patients that 
can last greater than seven days [4,5,8].

The therapeutic effect of sub-anesthetic administration of ketamine 
has been attributed to the direct inhibition of NMDA receptor activity 
produced by ketamine binding to the intraductal PCP site. This effect 
has been identified as one of the key pharmacological properties of 
ketamine. The clinical response was thought to be associated with a 
chain of events initiated when a patient experiences noxious stimuli, 
which liberates glutamate from nociceptive afferent nerve endings, 
which, in turn, stimulates the NMDA receptors causing an influx of 
intracellular calcium producing a cascade of future neuronal signaling. 
The repeated, chronic stimulation of the NMDA receptor is involved 
in the central sensitization seen in chronic pain syndromes. Thus, as 
an NMDA-antagonist, ketamine decreases the influx of intracellular 
calcium and downstream signal transmission and thus decreasing 
proinflammatory cytokines.

However, the clinical effectiveness of ketamine in CRPS and 
treatment-resistant-MDD patients is varied with about 1 out of 3 
failing to achieve an optimal response [4,5,9]. Pharmacodynamic 
studies of ketamine in responding and non-responding patients have 
indicated that the plasma concentration of ketamine is not the only, or 
perhaps, key determinant in therapeutic response. This has prompted 
research into measuring downstream metabolites, distinguishing 
critical enzymes, and the search for pretreatment biomarkers that will 
distinguish ketamine responders from non-responders. 

Ketamine is extensively metabolized and, therefore, a key factor 
as to whether or not a patient would receive long term relief from a 
brief exposure to ketamine may be the systemic exposure of the patient 
to one or more of these metabolites. One metabolite, nor-ketamine, 
has been identified as having anesthetic and analgesic properties 
[10,11] and a second, (2S,6S)-hydroxynorketamine has been shown 
to have CNS activity associated with neurogenesis and antidepressant 
effects in the rat [12]. Since these metabolites appear to contribute 
to clinical response, it is logical to assume that the expression of the 
hepatic metabolizing enzymes, i.e. cytochrome P450 (CYP) enzymes, 
involved in the production of these compounds would also play a role. 
While ketamine is metabolized by a number of CYPs, CYP2B6 is a 
key mediator in the N-demethylation of the parent drug [13]. Since 
this enzyme is undetectable in up to 15% of Caucasians and 70% of 
Japanese patients [14], pharmacogenetic differences may factor 
into why certain patients have an unfavorable response to ketamine 
infusions. This aspect is under investigation in order to determine if 
pre-treatment genotyping for selective CYP expression can be used to 
predict ketamine response.

Another approach to the optimization of ketamine treatment is 
based on the understanding that ketamine exists in two stereoisomeric 
forms, R-ketamine and S-ketamine. The drug is usually administered 
as R,S-ketamine, a racemic (50:50) mixture of R-ketamine and 
S-ketamine. Recently, there has been interest and debate in regards 
to whether or not the administration of the individual stereoisomers, 
i.e. S-ketamine or R-ketamine, may be a more efficacious approach. 
Initially, S-ketamine was presumed to be the drug of choice, as it is ten 
times more potent at the NMDA receptor [10,14], and this formulation 

is in clinical use in Europe. However, recent data has suggested that the 
administration of R-ketamine would be preferable in the treatment of 
MDD as this isomer is free of psycotomimetic side effects and appears 
to produce more potent and longer-lasting antidepressant effects [15].

The potential clinical use of hydroxynorketamine metabolites 
in place of the parent drug is of interest based upon their recently 
observed pharmacological effects [16,17] and the fact that (2S,6S)-
hydroxnorketamine and (2R,6R)-hydroxynorketamine are primary 
circulating metabolites after the administration of R,S-ketamine 
[14,16]. It is of interest to note that (2S,6S)-hydroxynorketamine 
and (2R,6R)-hydroxynorketamine are not potent inhibitors of the 
NMDA receptor suggesting that there is a different pharmacological 
mechanism associated with their therapeutic effects. The data from 
recent studies have indicated that this mechanism involved an indirect 
inhibition of NMDA receptor activity produced through the reduction 
in the circulating levels of D-serine, a key co-agonist of the NMDA 
receptor that specifically activates pre-synaptic NMDA receptors [17]. 
The therapeutic importance of this effect is suggested by the results 
from in vitro studies demonstrating that incubation of PC-12 cells 
with pregabalin and gabapentin reduces the intracellular production 
of D-serine [18]. 

D-Serine levels are associated with a number of psychological 
disease states including neuropathic pain, depression, and chronic pain 
induced emotional distress, suggesting that this compound might be 
useful as a pre- and/or post-treatment biomarker of ketamine response. 
Indeed, a recent study by Goldberg, et al. suggests that basal D-serine 
plasma concentration may be a biomarker to determine which patients 
are likely to benefit from ketamine infusions in the treatment of MDD 
[19]. Using the Montgomery Asberg Depression Rating Scale with 
greater than 50% decrease as a positive response, this study noted that 
decreased baseline levels of D-Ser has a direct correlation with response 
to treatment [11, 19, 20]. 

Magnesium (Mg+2) may also play a significant role in the long-
term antidepressant and analgesic efficacy of ketamine. There appears 
to be a direct correlation between low levels of Mg+2 and stress and 
refractory depression [21]. Nearly all antidepressant medications, 
including ketamine, increase the levels of circulating Mg+2 in the brain. 
Intravenous Mg+2 itself has been investigated as a potential therapy. 
In 2008, a randomized clinical trial showed no difference between 
Mg+2 versus imipramine in treating diabetic patients suffering from 
depression [22]. In contrast, in 2001 a double blind randomized 
controlled trial showed that Mg+2 has no intrinsic analgesic effects 
in clinically relevant doses [14]. Furthermore, in 2013 a randomized 
control trial showed no benefit in the treatment of chronic CRPS with 
Mg+2 versus placebo [23]. However, it is important to note that D-serine 
is product of the serine racemase mediated racemization of L-serine 
[24]. Serine racemase is a pyridoxal-5’-phosphate dependent enzyme 
that requires Mg+2 or calcium (Ca+2) for its enzymatic activity. Thus, 
the importance of circulating Mg+2 concentrations in the therapeutic 
response to ketamine may be an indirect affect mediated through 
serine racemase. 

In conclusion, the future is bright with the use of ketamine and/
or its metabolites as successful treatment in regards to CRPS and 
MDD. However, there still is need for much more research. Although 
Mg+2 has not shown to have any intrinsic analgesic properties [25], 
it is possible that CRPS patients with low levels may be less likely to 
respond to ketamine therapy. Randomized controlled trials in regards 
to baseline D-serine and Mg+2 would help determine if they are in fact 
potential biomarkers. 
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