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Abstract

This study investigates geochemistary of major and trace elements of sandstones and mudstones in the
Chabahar area located of northeastern Oman Sea. In this study, 52 samples were taken from 5 sections included of
Tiss, Ramin, Lipar, Gorankash and Garindar estuary. Then have been done grain size and chemical analysis using
XRF and ICP AES methods in geological survey of Iran. Comparison of major elements values with the average
amounts of upper continental crust indicate due to sedimentation processes or the lack of source rocks contain
sodium plagioclase, the amount of Na,O and Fe,O, in continental crust is highly depleted. Plotted geochemical
data of major elements from Late Miocene-Pleistocene, age 10 mudstone and sandstone samples in east coasts
of Chabahar in Makran zone, on siliciclastic rocks classification diagrams, showed that the sandstones are genus
wackstone, Mudstones and shale. Values range the chemical index of alteration (CIA) and plagioclase index of
alteration (PIA) respectively is from 40 to 60 and 40 to 64. However, most samples have values less than 50,
suggesting a low to moderate degree of alteration (weathering) and arid to semi-arid climate during deposition
in the source area. Major elements geochemistry is not useful for interpreting the tectonic setting. Discrimination
plots based on assotiated trace elements, such as Ti, Zr, La, Sc and Th, show that most data located in the active
continental margin field and tectonic setting have developed in active continental margin (ACM). Finally, geochemical
data and using from sediments silisiclastic discriminate diagrams on the major elements in these rocks shows that

the quartzose sedimentary provenance.

Keywords: Chabahar; Makran zone; Geochemistry; Siliciclastic
rocks

Introduction

The chemical and mineralogical composition of clastic sedimentary
rocks is controlled by various factors such as source rock composition,
chemical and physical weathering and sedimantition processes such as
mechanical sorting decomposition and diagenesis [1-4]. It is on this
basic, therefore, that the chemistry of fine-grained clastic sedimentary
rocks has been long utilized for making inference on source rock
compositions, palaeoclimatic conditions and tectonic setting [5]. The
relationship between the composition of siliciclastic sediments and
their tectonic setting and provenance has been examined by many
workers [6-12]. The geochemistry of siliciclastic sedimentary rocks
may reflect the signature of parent materials [5,13], and literature
provides many examples of ways to interpret geochemical data to
understand sedimentary rock provenance [9,11,14-18]. Because
chemical composition is also a function of weathering, transportation,
and diagenesis, much emphasis has been put on relatively immobile
elements such as Cr, Co, Th, Y, Zr, Hf, Nb and Sc. The low mobility
of these elements during sedimentary processes enables a better
discrimination of the provenance and tectonic setting [5,10,13,19,20].
Along the Makran coastline, the formation of the coastal escapments
and fluid migration has been attributed to repeated pulses of vertical
movments [21-24]. Although tectonic events interrupted the formation
of complete sedimentary cycles in the shelf and shoreline exposed
in these escapments, the effects of these tectonic movments did not
uniformly influence the sedimentary records along the coastline [24].
Geologic studies have concentrated on the Quaternaryrocks exposed
in southeast Iran, as well as in the Oman Sea. In contrast, little is
known about the Cenozoic rocks in Chabahar. In general, the papers
published on the Quaternaryrocks of Chabahar deal mainly with their
sequence stratigraphy and sedimentology. No detailed studies of their
geochemistry and tectonic setting have been made. The present work

incorporates geochemical composition of the Quaternarysandstone
and mudstone exposed southeast of Chabahar area, in an effort to
disclose their provenance and tectonic setting. An attempt is also made
to depict the paleo-weathering conditions of the source area during
their deposition.

Regional and Local Geologic Setting

The Makran accretionary prism results from active subduction of
the Arabian plate beneath the Iranian and Afghan continental blocks
since the Late Cretaceous times [25-27]. The plate convergence rate
has been estimated between 2.5 and 4 cm yr' [22,26,28,29]. The
Makran subduction zone is an area of significant seismic activity
[30-33], periodically affected by devastating earthquakes such as the
1945 Makran earthquake (Mw 8.1-8.3), which is the largest known in
this region [21,31,34,35]. Low- to moderate-magnitude earthquakes
(mainly related to thrust activity) occur more frequently (b50 y return
time) in the Makran area (not restricted to the coast) [30,31]. The
pattern of seismicity is distributed over a 700 km long and 200 km wide
segment of plate boundary [31,32]. The Makran accretionary prism
is more than 350 km wide [22]. Over 60% of the prism is presently
sub-aerial, separated from the submarine part (100-150 km) by a
nearly undeformed continental shelf [27]. As subduction proceeded,
from Paleocene time, the oceanic depo-trough shifted episodicslly
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Figure 1: Geologic map of the study area (Chabahar Gulf) that shows
measured sections.
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Figure 2: Chart of texture from the Quaternary sandstones in Chabahar area,
southeast Iran.

southward; with each shift a thrust slice of the sedimentary prism

accreted onto the northern continental blocks. The differing rate of

emergence along the coastline resulted in the formation of marine
terraces of different heights [21,24]. The studied sediments are exposed
east Gulf of Chabahar, along 25 km of the Makran coast of the Oman Sea
(Figure 1). This coastline defines the southern boundary of the Coastal
Makran Zone of [36]. The Miocene-Pleistocene sediments (Geological
Survey of Iran, 1996) of the Coastal Makran Zone consists of mixed
silisiclastic-carbonate deposits, which are known to be shallow marine
molasses deposits and comprise mostly material recycled from Makran
flyschs and order molasses exposed in the northern highlands.

Materials and Methods

Samples presented here include mudstones, siltstones and fine-

grained sandstones (here termed as mudrocks) collected from the
Makran flyschs in view of the fact that fine-grained clastic sedimentary
rocks are more useful in geochemical studies than the coarser ones [5].
Mudrocks are fine-grained siliciclastic rocks rich in clay minerals [36, 37].
Clays preserve source rock chemical signstures due to the fact their
mineralogy is rarely affected during diagenesis and metamorphisis
[38]. Fifty-two samples was taken of clastic sedimentary rocks (from
Tis, Ramin, Gurankash, Lipar and Khur-e-garrindar sections), and 22
samples were chosen for geochemical analysis. Chemical analyses were
carried out at the laboratory of the Geological Survey of Iran. Major
elements were analyzed by automatic X-ray fluoreseence spectrometer
(XRF) using fusion glasses made from a 1:5 mixture of powdered sample
and Li,B,O, flux [39]. Trace and Rare Earth Elements were analyzed
with a Inductively Coupled Plasma Optical Emission Spectrometer
(ICP-OES). Loss on ignition was determined by heating the samples
at 1000°C for two hours. The analytical reproducibility as deduced
from replicate analyses is better than 3.9% for most trace elements and
better than 0.9% for most major elements except P,O, (3.9%), Na,0O
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Figure 3: Plot of the Miocene-Pleistocene sediments in the ternary diagram
of Folk.

Figure 4: Photomicrograph of sub-litharenite (a, b), litharenite (c, d) and
mudstones (e, f).
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(1.5%) and K,0 (1.3%). The accuracy of the ICP measurements as
computed from replicate analysis of the USGS SY-3 rock standard is
better than 2% for SiO,, ALO,, Fe,0O,, MnO, Ca0, Na,O and TiO, while
the accuracy for P,O,, K,O, and MgO data are 7.4%, 3.5% and 3.7%
respectively. The accuracy for most trace element analyses is within
0.54-3.9% (except for V which is 10%) whereas reproducibility of the
ICP measurements is better than 7%.

Petrography and Textural Analysis

The relative proportions of the sand, silt and clay in the sandstones
studied are shown in Figure 2 and plotted on the diagram of Folk
(1980) (Figure 3). Most of the samples are texturally classified as silty
sand, sandy mud, sandy silt and muddy sand.

Microscopic studies indicate that the Quaternary siliciclastic rocks
in the study area are formed mainly of sandstone, greywacke, siltstone
and mudstone (Figure 4). Quartz is the dominant detrital mineral;
varying from very fine to fine sand-sized grains (Figure 4). The grains
range from sub angular to sub rounded and from poorly to moderately
sorted. Rocks having well-rounded and sorted grains are present in
certain horizons and reflect a more mature depositional setting. Most
quartz grains are monocrystalline and some of the quartz grains are
partly sutured. In the Pettijohn [40] scheme, these rocks are classified
as litharenite, sub-litharenite and mudstone. The slight enrichment of
Na and K-feldspar over plagioclase is attributed either to prolonged
weathering, transportation or recycling.

Geochemistry

The results of the major and trace element analysis of the mudstones
and sandstones of the coastal Makran, Chabahar area (22 samples) are
listed in Tables 1 and 2, respectively.

Major elements

The Major element distributions reflect the mineralogy of the
studied samples. The SiO, content is low and varies from 53.9%
t059.7%, with an average of 56.4%. Silica is below the mean value
for the upper continental crust (UCC) in most studied samples [5].
Sandstones are higher in SiO, content than mudstones (Figure 5).
Similarly, mudstones are higher in K,O, Fe,O, and TiO, contents than
sandstones, which reflect their association with clay-sized phases. AL,O,
abundances were used as a normalization factor to make comparisons
among the different lithologies, because of its immobile nature during
weathering, diagenesis, and metamorphism. In Figure 5, major oxides
are plotted against AL,O,. Average UCC values [5] are also included
for comparison. Among other major elements, Fe,O,, MgO, K,0, TiO,
and P,O, are consequently showing strong positive correlations with
A1203, whereas CaO and Na,O do not exhibit a trend (Figure 5). The,
strong positive correlations of the major oxides with AL O, indicate that
they are associated with micaceous/clay minerals. In comparison with
UCC, the studied mudstones are low in MgO, CaO, Na O and high in
AlO, and TiO,. Al and Ti are easily absorbed by clays and concentrate
in the finer, more weathered materials. In addition, XRD analysis of the
studied mudstones and sandstones reveals that they are associated with
the mineral chlorite (Al,O,) [41]. On average, the studied mudstones
have lower SiO, abundances relative to UCC therefore the observed
variations are probably due to quartz dilution effect.

Generally, most elements increase with rise in AL O, from silty
sandstone to sandy mudstone. Positive correlations with ALO, are
shown by most of the major elements (Figure 5). Marked negative
correlation is shown by SiO, confirming that much of SiO, is present as
quartz grains. These trends may be controlled by the silt fraction [42].
The trend of decreasing K,O and Na,O with increasing SiO, is sensitive

Page 3 of 9
24 F S ¥ ="
4 4 - .
.
% B il -
o (s}
ad s <o S 4
o - = 1
ta ol M
B R s e S T
a9 11 13 15 ] 1 13 15 14 1 13 15
AlOy AlO5 Al;O
¥ ¥ Y
w | R4
- e 5 a
-

A - i o
F] 9 = £ (WoEs| | 2
g q < F 8 .

EE Y s ce e

. & . 4
w | e o3 -
= s i e % 2 4
L e e e o e o o e e R o i e
ol 5 9 N 13 15 9 11 13 15
ALO, ALO, ALO,
s o o Legend
B . . @ e
= - 4 A Sandstones
w o =
O .
g‘ A 2> 24 Mudstones &
a7 . = + o
- ucc +
-2 b 3 L
- 4 . " LY
P e e e e T T
a9 11 13 15 9 " 13 15
Alz0; AlLO;

Figure 5: Co-variation of major elements versus ALO, for the study
samples. Fe,O,, MgO and K,O show positive correlation of AL,O, with the
major elements, SiO,, CaO and Na,O show negative correlation.

to grain size, probably due to the decrease of clay content in the
coarser sediments. The low K,0/Na,O ratios of due to sedimentation
processes or the lack of source rocks contain sodium plagioclase [43-
45]. A positive correlation between K,O and AlL,O, implies that the
concentrations of the K-bearing minerals have significant influence on
Al distribution and suggests that the abundance of these elements is
primarily controlled by the content of clay minerals [43,46].

However, according to the geochemical classification of [47], most
of the studied mudstones and sandstones samples plot as tight clusters
in the wacky field (Figure 6). Only a few samples are enriched in Fe,O,
and fall in the shale and litharenite field. In terms of major element
compositions (Table 1), studied sandstones are relatively enriched in
MgO, Fe,O, and ALO, and depleted in Na,O and K,0. Mudstones
have a higher proportion of ALLO, and are depleted in Na,O, which
reflects the greater proporition of clay minerals (especially chlorite and
sericite) in the finer-grained deposits.

Trace elements

The major and trace element compositions for the studied samples
(sandstones and mudstones) are highly comparable and are suggestive
of similar protolith (Table 1). However, the depletion in TiO,, AL,O,
and the transition trace elements particularly Co, Ni, Sc and V, which
are normally enriched in mafic rocks [48]. These elements are mainly
concentrated in the clays or metal oxides [49]. Vanadium is positively
correlated with TiO, (r = 0.71). It is possibly adsorbed on kaolinite and
associated with iron oxide minerals [50,51].

The negative correlation between SiO, and the trace elements
suggests most of the trace elements are concentrated in the clay
fraction. Ba is positively correlated with K (r = 0.54), suggesting that
the K bearing clay minerals control its abundance [43,52,53]. Positive
correlation of Co, Ni, Cu, Zn, Li and V with both ALO, (r = 0.91, 0.48,
0.23, 0.36, 0.22 and 0.41, respectively, Figure 7) and Fe,O, (r = 0.90,
0.35, 0.18, 0.25, 0.28 and 0.13 respectively, Figure 8). Cr is positively
correlated with SiO, (r = 0.40) and negatively correlated with most
major and trace elements, suggesting its possible association with
calcite.
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Major (w %) B-2 B-4 C-2 Cc-4 D-2 D-4 E-2 E-4 E-6 E-8 A-2 A-4 Average
Sio, 58.14 57.99 59.52 59.50 59.71 54.51 54.86 55.13 55.13 |56.45 53.89 53.91 56.32
AlLO, 10.52 11.42 9.77 11.31 10.79 14.43 14.36 15.18 14.38 1448 15.17 14.95 13.11
Fe,O, 3.9 4.1 3.75 4.02 3.67 5.94 6.15 6.49 5.51 6.43 6.06 6.49 5.21
MgO 3 3.06 3.22 3.39 3.98 4.07 3.62 3.79 3.63 3.60 3.62 3.52 3.47
Ca0O 9.2 8.43 10.57 7.62 7.93 5.42 5.73 5.16 6.64 5.63 5.07 5.14 6.82
Na,O 2.02 2.07 1.59 1.89 1.59 1.38 1.66 1.29 1.26 1.32 1.65 1.82 1.66
K,O 1.66 1.76 1.55 1.86 1.55 2.57 2.57 2.86 2.48 2.67 2.67 2.86 2.25
TiO, 0.57 0.57 0.57 0.59 0.61 0.64 0.66 0.69 0.68 0.74 0.66 0.73 0.65
PO 0.15 0.14 0.20 0.16 0.19 0.18 0.16 0.18 0.19 0.18 0.18 0.18 0.18
Lol 9.9 9.44 8.62 9.02 9.72 10.18 9.50 7.98 9.50 9.44 9.82 9.56 9.48
Total 99.06 99.09 99.48 99.36 99.23 99.42 99.37 99.56 99.40 199.15 98.89 99.16 99.25
K,0/ Na,O 0.82 0.85 0.97 0.98 0.79 1.86 1.55 2.22 1.97 2.02 1.62 1.57 1.42
Fe,0,+MgO 6.9 7.7 6.97 7.41 6.65 10 9.77 10.28 9.14 10 9.68 10.52 8.73
ALO,/ SiO, 0.18 0.20 0.16 0.19 0.18 0.26 0.26 0.27 0.26 0.27 0.28 0.28 0.23
CIA 46 48 40 50 48 60 59 61 58 60 62 60 60
PIA 45 48 40 50 48 63 61 62 64 56 65 63 62

Table 1: Chemical composition of Major elements of the Quaternary sandstones and mudstones, Chabahar area
Elements B-1 B-3 c-1 c-3 D-1 D-3 E-1 E-3 A-1 A-3
Ag 0.1 0.1 0.1 0.3 0.0 <0.1 0.2 0.1 0.2 0.2
As 3.6 8.5 7.7 8.0 7.9 7.3 5.8 4.8 9.5 8.4
Ba 183.4 255.7 164.4 174.4 158.2 248.8 227.6 193.3 232.0 230
Be 1.9 2.0 1.3 1.0 1.1 2.3 2.1 1.7 2.3 1.8
Bi 0.8 0.8 0.7 0.5 0.6 0.8 0.7 0.7 0.7 0.7
Cd 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2
Ce 48.8 51.2 39.6 41.7 39.1 64.4 53.2 55.4 57.9 58.5
Co 32.6 34.2 20.6 17.2 19.9 325 28.2 23.1 33.3 334
Cr 123.2 147.9 86.4 1441 91.6 158.7 142.2 125.3 162.7 160.8
Cu 40.6 374 24.0 15.4 17.5 32.7 31.3 14.5 229 23
Dy 6.6 5.9 3.7 3.6 3.0 7.8 6.6 5.8 7.2 6.8
Er 25 24 2.3 2.8 2.8 24 2.7 25 25 25
Eu 25 25 1.5 21 1.5 1.9 1.8 2.0 1.9 2
Ga 11.6 6.6 5.8 8.2 5.8 13.0 10.4 6.3 11.1 10
Gd 9.3 9.0 6.9 6.0 5.5 8.7 8.0 6.9 8.6 8.5
Ge 2.3 1.6 34 25 3.2 3.3 24 2.1 2.9 3
Hf 2.7 3.9 0.8 44 3.4 21 3.5 43 2.8 2.6
Hg 0.07 0.06 0.05 0.07 0.05 0.05 0.07 0.05 0.06 0.05
Ho 1.1 1.1 1.0 0.9 0.8 1.1 1.0 0.9 1.0 1.0
La 244 25.6 214 243 19.8 321 27.9 295 29.3 30
Li 44.3 46.4 31.0 23.9 28.1 49.8 42.8 39.2 48.6 45.2
Lu 0.6 0.7 0.4 0.3 0.3 0.6 0.5 0.4 0.6 0.5
Mn 503.7 502.4 586.5 7171 581.1 805.5 543.0 829.6 787.8 802.5
Mo 0.9 0.8 0.9 0.9 0.9 1.1 1.0 1.0 1.2 1.4
Nb 17.2 17.9 14.4 12.4 13.1 21.9 18.9 20.2 20.8 20.5
Nd 242 275 26.7 25.0 244 28.7 29.7 30.1 25.6 24.3
Ni 159.5 161.5 105.4 715 94.5 157.0 151.6 109.4 161.6 158
P 873.6 881.2 794.1 687.3 656.8 866.3 884.6 1024.0 912.0 932
Pb 15.3 9.9 13.0 1.4 9.4 23.2 21.2 7.8 11.3 12
Pr 14.5 14.0 9.4 7.7 8.0 13.9 12.7 9.1 14.0 13
Rb 83.4 93.4 78.3 76.2 88.4 90.1 98.7 82.7 91.6 90.2
S 1446.9 1029.9 979.8 141.0 304.2 216.1 2883.3 211.8 126.9 355
Sb 0.4 0.4 0.3 0.4 0.5 0.4 0.3 0.4 0.3 0.4
Sc 13.6 13.9 9.9 8.3 8.7 17.7 14.7 13.4 16.1 15
Sm 5.3 4.8 4.9 4.5 4.0 6.6 5.6 7.0 5.3 6
Sn 5.3 5.2 34 2.8 2.8 5.0 4.6 34 5.3 4
Sr 149.5 137.8 514.1 303.1 197.1 211.3 2171 221.5 172.9 210
Ta 1.1 1.8 1.4 1.0 1.2 1.0 1.0 1.9 1.9 1.8
Th 12.2 12.1 9.3 6.3 6.6 14.7 133 10.5 13.0 12.3
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Ti 5566.9 5821.3 4774.7 4075.5 4283.3 7052.2 6276.5 6523.3 6603.6 594.9
TI 1.9 1.0 2.5 1.4 0.7 21 2.0 1.1 1.2 1.8
U 6.6 6.6 4.7 3.4 3.6 6.2 5.9 4.8 6.2 5.8
\% 113.8 116.8 92.6 791 77.0 147.3 127.8 113.0 141.8 133
Y 23.8 251 24.8 25.8 21.5 31.8 27.8 324 29.4 30
Yb 3.2 2.9 2.3 2.2 2.1 3.5 3.1 3.2 3.3 3.5
Zn 95.9 93.5 62.0 48.4 56.1 107.0 91.3 78.6 104.0 89
Zr 167.3 186.6 164.4 156.7 141.4 2255 203.9 218.8 211.7 2.15
Th/U 2.2 2.4 2 2.2 1.8 1.8 2 1.8 1.8 2.4
La/Sc 1.9 1.8 1.8 2.2 2.3 29 2.2 1.8 1.8 29
Sc/Th 11 1.2 1.2 1.3 1.3 1.3 1 11 1 1.3
La/Th 21 2.2 2.2 2.8 3 3.8 23 2 2 3.8
Co/Th 2.1 2.2 2.6 2.2 3 2.7 2.2 2.7 2.1 2.8
Cr/Th 10.7 10.8 12.5 12 13.9 22.9 9.3 10 9.3 22.9
Table 2: Chemical composition of Trace elements of the Quaternary sandstones and mudstones, Chabahar area.
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Discussion
Geochemistry and tectonic setting

Major elements geochemistry has been employed largely to
decipher ancient tectonic setting(Maynard et al., [54]; Bhatia [9];

enriched during the sedimentary processes and early diagenesis.

Several trace elements, such as Cr, Co, Th, Sc, La and Zr, should be
immobile under depositional conditions and diagnose specific source
rocks [5,10,55]. Hence, thay are more useful in discriminating tectonic
environments than the major elements. In the ternary, Th-Sc-Zr/10
and La-Th-Sc plots proposed by Bhatia and Crook [10] data for the
study samples are scattered, but most fall within the active continental
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compositions of the Quaternary mudstones and sandstones of the coastal
makran. (a) K,0/Na,0 vs. SiO, (Roser and Korsch, 1986); (b) TiO, vs.
Fe,0,+MgO (Bhatia, 1983); (c) Al,0,/SiO, vs. Fe,0,+MgO (Bhatia, 1983);
(d) SiO,/ALO, vs. K,0/Na,0 (Maynard et al., 1982; Roser and Korsch, 1986;
Gu et al., 2002). ACM, active continental margin; PM, passive margin; CIA.
continental island arc; OIA, oceanic island arc; IA, island arc; A1, arc setting,
basaltic and andesitic detritus; A2, evolved arc setting, felsitic-plutonic detritus
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[B]

,4 ? 440 3.2

”n
&

-
Felsic igneous . Quartzose

provenance

.

sedim

) rovenance
o

tary

Discriminant function:

provemance

£

-8 -0.6 ] -8 4,9 013 ]

Discruminant function |

Figure 11: Provenance discriminant function diagram using major elements.

margin (ACM) fields (Figure 10).
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Figure 12: Plot of Th/U versus the Th for the sandstone and mudstone of
Chabahar area, southeast Iran. The grey box shows the typical range of
upper crustal protolithes.
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Figure 14: Scatter plot of Al/Na ratios versus Chemical Index of Alteration (CIA)
for the studied samples. Fields are from Servaraj and Arthur (2006).

Several ratios and plots may be used to define the source rock of
siliciclastic deposites. Presence of greater than 70% SiO, implies the
sandstones are rich in quartz from quartz-rich crystalline provenance.
K,0/Na,O ratio can be considered as a simplified chemical provenance
indicator [56]. High values of this ratio reflect derivation from granites
rather than from basic rocks. This is also confirmed by the clay
mineral content, as illite and kaolinite were considered to inherit from
weathering horizons and soils developed on silicic rocks. In addition,
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Figure 15: Chemical maturity of the studied sandstone and mudstone
expressed by bivariant plot SiO,-(AL,O,+K,0+Na,O).

the absence of chlorite and smectite clay minerals also precludes mafic
source rocks. Felsic source rocks usually contain markedly lower
concentrations of Cr, Co, Ni and V elements and higher concentrations
of Ba and Sr then mafic source rocks. This is reflected in the sediments,
indicating the original protolith chemistry [5,43,57]. The studied
samples examined here are enriched in Sr and Ba and depleted in
transitional elements such as Cr, Co, Ni and V, reflecting the negligible
role of mafic provenance [46]. Also, these samples have elevated Ba
contents but are depleted in Co. The higher Ba/Co ratio (Table 1) is
suggestive of sediments derived from weathered quartzose source.

In the discrimination diagram for sedimentary provenance after
[12], all samples of the studied sandstones and mudstones plot in the
quartzose sedimentary field (Figure 11).

However, the Th/U ratios are very useful in determining the source
characteristics of clastic sedimentary rocks [58]. The present average
crust the Th/U ratios of 4.25-4.30 whereas the values for upper and
lower mantle are 2.6 and 3.8, respectively [59]. Although, sometimes
higher Th/U ratios have been related to oxidative weathering and
removal of U, yet, clastic sedimentary rocks derived from the upper
crust are characterized by ratios equal to or greater than 4 whereas
ratios lower than 4 have been related to a mantle contribution [58].
The sandstone and mudstone of Chabahar area, mean Th/U ratios of
1.8-2.4, respectively, which characteristics are suggestive of mantle
parentage. The elevated Th/U ratios in the studied samples (sandstone
and mudstone) could be attributed to either increased weathering
intensity or variation in oxidation state during deposition which would
permit U mobility [58]. On the Th/U versus Th diagram, all sandstone
and mudstone samples from the Chabahar area, derived from the
mantle (Figure 12).

The geochemical variations between elements such as Th and La
(indicative of a felsic source) and Sc (indicative of a mafic source)
have been used to distinguish between felsic and mafic provenances
by various outhors [5]. Th/Sc ratios are useful indicators of source
rock processes and are unaffected by sedimentary processes [5]. The
Th versus Sc plot (Figure 13), adopted from McLennan [60], reveals
two dominant source areas, a continental source with Th/Sc ratios near
1 and intermediate source with Th/Sc ratios 1-0.6 and mafic source
with Th/Sc ratios lower 0.6 (see; Figure 14). This observation further
suggests that the sandstones and mudstones were formed by more
ultrabasic detritus (intermediate source).

Geochemistry and source area weathering

Major elements abundances may reflect the composition of source
rocks. However, in some cases, their proportions may be modified
by weathering processes that affect the source rocks and by post-
depositional changes that affect the sediments [61-63]. Chemical
weathering affects, to a great extent, the composition of siliciclastic
sediments. Through these processes the large cations (Ba and Al)
remain preserved in the weathering residue in contrast to the smaller
cations (Na, Ca, Sr) that can be selectively removed [44,64]. The SiO,/
AL O, ratios are low (3.55-6.09%; averaging 4.41%) and indicate a low
degree of maturation of the mudstones and sandstones Chabahar area,
southeast Iran (Table 1). The degree of weathering may assessed by
the chemical index of alteration (CIA = [ALO,/ (AL,O,+ CaO"+ Na,O
+ K,0) x 100]; [65]) and the plagioclase index of alteration (PIA = [
ALO,-K,0/(ALO,+ CaO" + Na,O + K,0) x 100]; [66]), in molecular
proportions. In the equations, CaO" represents the value of Ca in
the silicate fraction only or other term CaO’" is the amount of CaO
incorporated in the silicate fraction of the rock.

CIA and PIA values of about 45-55 imply weak weathering [60,66]
whereas values of near 100 indicate intense weathering, with complete
removal of the alkali and alkaline earth elements and increasing ALO,
content. Because feldspar and volcanic glass make more than 75% of
the labile material in the upper crust, these indices measure the degree
of alteration of feldspar to clay minerals [5,44,66,67]. So, the CIA values
represent the alteration of primary minerals (e.g., feldspars, volcanic
glass, heavy minerals) to clay minerals. Low CIA values indicate a low
to moderate degree of alteration of the source rocks. The calculated
CIA and PIA values (Table 1) range from 40 to 60, with an average 54.5,
and from 40 to 64 with an average 55.2, respectively. However, most
samples have values less than 50, suggesting the low to moderate degree
of alteration and weathering either of the original source rocks. In a
plot of Al/Na ratios versus CIA of all sandstones and mudstones plot in
the intermediate weathering field except for a few samples which plot
in the low weathering field (Figure 14).

Sandstones and mudstones composition of Chabahar area expressed
as a function of SiO, percentage against total percent of A1,O,, K,O and
Na,O is used the discriminate the paleoclimatice signature and to give
an idea about the chemical maturity of the studied deposites (Figure
15). The majority of the studied sandstones and mudstones plot in arid
field with low maturity.

Conclusions

The geochemistry of Quaternarys andstones and mudstones
from Chabahar area, southeast Iran, were studied to determine their
provenance, source area weathering and the tectonic setting in which
they were deposited. Our attempt to distinguish tectonic setting from
major element geochemistry is not successful. In this case, mobile
elements such as Na and K seem controlled not only by provenance
but also by mineralogical transformation and authigenesis, especially
during diagenesis. Some trace elements, such as (Cr, Co, Th, Sc, La
and Zr) better preserve the characteristics of source rocks because of
their low mobility on the earths surface. Source rock weadering and
provenance of the sandstones and mudstones sequences in Chabahar
area have been assessed using geochemical studies. Major elements
compositions suggest that these rocks were derived from low to
moderately weathered protoliths. The low CIA and PIA values of
these rocks a low to moderate degree of alteration of the source rocks.
Discrimination plots by major and trace elements shows that most data
lie in field, typical of active continental margin. The Th/Sc, Co/Th, La/
Sc and Cr/Th values point to a significant input of detrital material of
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