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ABSTRACT

The construction of the tourbillon balls is fundamentally well known to Constatin and Strauss. In this work, we 
apply the flow of water through the compacted granular, in order to arrive at a model of passage in confinement 
and stagnation through the pores. An approach agrees of the advanced theory of water waves and the application 
of dynamics in microfluidics is discussed to improve “ASEAD Project water for everybody”. The approximation 
solution of nonlinear stochastic partial differential equation for only element of “Yakam Matrix” liquid-solid 
interface by simple understanding bifurcation behavior will follow the some trajectory of waves of water, granular 
compaction and dynamics of fluids at all scales, then we are still just at the beginning. 
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INTRODUCTION

In many cases, we find differential equations and partial differential 
equations, which justify the different variations of physical, 
chemical, biological or other phenomena, using five well-known 
physical states of matter. These are: the solid state (s), the liquid 
state (l), the gaseous state (g), the plasma state and the colloidal 
state. These states allowed us to build a matrix called Yakam 
introduced for the first time in 2007 [1].

We consider the Stokes equation governing the velocity and 
pressure of an incompressible creeping flow, subject to the gravity, 
in a domain Ω, open bounded subset of Rd. As the flow is supposed 
to be sufficiently slow to neglect the advection compared to the 
diffusion, the momentum balance equation reduces to −𝛻. 𝜎=𝜚(𝑥, 
𝑦, 𝑧)𝑔(𝑥,𝑦,𝑧) 

With the stress tensor 𝜎=𝜏−𝑝𝐼 Consisting of a viscous stress 
tensor 𝜏 and pressure term with I the identity matrix of Md (R). 
The incompressible constraint (𝑥,,)=0.  Moreover, the relation 
between liquid and granular through pores of Nano diameters   
gave supplemented with boundary conditions dΩ.  In practice 
one cylinder with three dimensional in viscid gravity waves at the 
surface of layer of water with a flat bottom is the build case.

This interface helps the simple Setup, where undisturbed state 
of flat surface equation is y=0 and the flat bottom is given by 
y=-d for some d>0. In the presence of waves, let y=n(t, x) be the 

free surface and let (u(t, x, y, z)), v(t, x, y, z), w(t, x, y, z)) be the 
velocity field (Figure 1). If P (t, x, y, z) denotes the pressure, P

o
 the 

constant atmospheric pressure, and g is the gravitational constant 
of acceleration, the governing equations [2,3] are:   
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Figure 1: Interface liquid-solid-drinking water.
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Where, k is the thermal conductivity of media. Substitution of 
Fourier’s relation gives the following basic flow equation: 
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The specified pressure, volume and ambient temperature are 

( ), , ,s x y z tθ θ= 𝑜𝑛 𝑆
1
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and the convection boundary conditions is  ( )1

N
xi xi ex sui

q hη θ θ
=

= −∑  
on S

3
. 

For coupled phenomena’s during interaction near the granular the 
contact with solid gives 4

1

N
xi xi s ri

q h qη σεθ α
=

= −∑  on S
4
 where σ  is 

Stephan-Boltzmann constant, ε  is the surface emission coefficient; 
α is the surface absorption coefficient and rq  is coming flow per 
unit surface area. For transient problems it is necessary to specify 
a pressure field for a body at the time t=0; θ(x, y, z, 0)=θ

0
(x, y, z).  
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The boundary conditions for the water wave problem are P=P
0
 on y=

( ), ,t x v t u xη η η= +  on y= ( ), , 0t x vη =  on y=-d                 (2) 

Given c>0, we are looking for periodic waves traveling at speed c. The 
profile η  oscillates around the flat surface y=0 and the horizontal 
fluid velocity u is less than c at every point. For convenience we 
shall take the length scale to be 2𝜋. Define the (relative) stream 

function ( ), ,x y zψ  by x W Vψ = − , y U Wψ = − , z V Wψ = − , 

with 0xψ =  on the free surface, and let 
w v u
x y z

ω ∂ ∂ ∂
= − +
∂ ∂ ∂

 be the 

vorticity ψ ω∆ = − .  At least locally, away from a stagnation point 

(a point where u=c, v=d, w=0), ω is a function ofΨ . We will assume 
that there is a functionγ , called the vorticity function, such that 

( )ω γ ψ=  throughout the fluid. Thus, ( )ψ γ ψ∆ = − . We define the 

relative mass flux as ( )
( )

0 , ,
n x

d

p u x y z c dy
−

= −  ∫ , which is independent 

of x by (2). Since u<c, po<0. Let ( )
0

p

pr s dsγ= −∫  have minimum value 

r
min

 for p
0
≤p≤0. Let Dη  be the closure of the open fluid domain

( ) ( ){ }2, , : x R, d y , ,nD x y z R x y zη= ∈ ∈ − < < . Given as set E 

with a smooth boundary, define for ∈ 𝑁 and α ∈ (0,1) the space 
𝐶𝑝𝑒𝑟

𝑚+𝛼 (𝐸) of functions 𝑓:𝐸→𝑅 with Holder continuous derivatives 
( of index  𝛼)  up to order m and of period 2𝜋 in the x, y and z 
variables.  Our main results are as follows (Figure 2). 

THEOREM 1 

Let the wave speed c>0, the relative mass flow po<0 and an arbitrary 
α∈ (0,1) be given. Let y(s) be a C1+α function defined on [0,|po|] 

Such that 

( )( ) ( ) ( )( )
0

0 3 1
2 22 2

0 02 2 min 2 2 min
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Γ − Γ + − Γ − Γ < 
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∫           (3)

And    (𝑠) ≥ 0, (𝑠)′ ≤ 0 in [0,/p
o
/].                                                        (4)

Consider traveling solution of speed c of the water wave problem 
(1)–(2) with vorticity function   such that u<c throughout the fluid. 
There exists a connected set C of solutions (𝑢,,,) in the 

Space 𝐶𝑝𝑒𝑟
2+𝛼 𝐶𝑝𝑒𝑟

2+𝛼 × 𝐶𝑝𝑒𝑟
3+𝛼 (𝑅) appropriated to Sobolev Space 

for Nonlinear Partial Differential Equation, with the f𝜂 ollowing 
properties. 

1.	 C contains a trivial flow (with a flat surface 𝜂=0 ); 

There is a sequence of solutions (𝑢𝑛, 𝑣𝑛, 𝑤𝑛, 𝜂𝑛) ∈ 𝐶 for which

max Dnu nu c↑ . 

Furthermore, each solution (u,v,w,𝜂) ∈ C satisfies. 

1.	 It is easily that u, v, w, 𝜂 have period  2𝜋  in axis of gravitation 
z; 

2.	 Within each period the wave profile  𝜂 has a single maximum 
(crest) at x=a, say, and a single minimum (through); 

3.	 That u and 𝜂  are symmetric while v is antisymmetric 
around the line x=a; 

4.	 𝜂′(𝑥) < 0 on (a, a+𝜋), i.e., the profile of the wave is strictly 

Figure 2: Main results with the x, y and z variables.
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decreasing from crest to trough. 

THEOREM 2

(i) We make the same assumptions as in theorem 1, except we do 
not assume (4). Then there exists a connected set C with the same 
properties as in Theorem 1, except that 5 ii) is replaced by (B*) 

there is a sequence (𝑢𝑛,) at either max Dnu nu ↓ −∞ .

DISCUSSION 

History of Stokes  

In 1847 Stokes [4] studied irrotational periodic traveling water waves 
and some of their nonlinear approximations. The flat approach 
was developed Levi-civita [5] and Struik [6]. Nevertheless in this 
work we construct a global continuum of such regular solutions 
with general vorticity.  After that no other bifurcation point 𝜆∗ 
can have this nodal pattern and the pattern persists all along C 
the nonlinear boundary condition. We reduce the alternative (a) 
that C is unbounded in 𝐶𝑝𝑒𝑟

1+𝛼 (𝑅), to the condition that ℎ𝑝 is 
unbounded in 𝐿∞ (𝑅), then we prove that h is successively bounded 
in 𝐶𝑝𝑒𝑟

1+𝛼 (𝑅), in 𝐶𝑝𝑒𝑟
2 (𝑅) in 𝐶𝑝𝑒𝑟

2+𝛼 (𝑅), and finally in 𝐶𝑝𝑒𝑟
3+𝛼 (𝑅), in 

𝐶𝑝𝑒𝑟
2+𝛼 (𝑅) ℎ𝑝. Here we use the Schauder estimates and several basic 

a priori estimates of Lieberman and Trudinger [7] for nonlinear 
elliptic equation with nonlinear oblique boundary conditions.

APPLICATION 

Thus alternatives are reduced to (a*) either ℎ𝑝 is unbounded in L∞ 
(𝑅), or (c) C contains in its closure a solution where ℎ𝑝 vanishes. 
Then we return to the original problem in the form of the Euler 
equation. Under assumption (4) we eliminate the last possibility 
(c). However, (a*) means that max 𝑢𝑛 ↑ c, while (c) means that min 
𝑢𝑛 ↓ -∞ for some sequence of solutions. 

Compacted granular 

Granular matter has been the subject of numerous studies since 
two last decades [G1-G2] for two–dimensional granular system 
[G2] and some the propagation of two-dimensional [G3] inviscid 
gravity waves at the surface of a layer of water with a flat botton. 

Many manipulations of granular by compaction to properties 
powders are well-known, but  the manipulation the adhesion liquid 
onto compacted granular  in four different scales: macroscopic 
scale, mesoscopic scale, microscopic scale and nanoscale is very 
complex and present the nonlinearity of behaviour waves water  
onto substrates solid of compacted granular throughout the 
porous. Interface liquid-solid   generate by nonlinear dynamical 
system. The models developed can help to understand and make 
predictions about effects induced by multipara meters change such 
onto during flow liquid, stagnation and flow in porous of granular 
and amplitude of periodic stimulus. The multi-disciplinary 
team of scientists and support staff whose aim is to investigate 
the occurrence of scrapie in the water of world population and 
to provide advice on the control of penery of drinking water in 
the future.  We do not understand if the complex of element‘s 
“Yakam Matrix” can in physical sciences; scientific understanding 
has been expressed in elegant theoretical constructs and has led 
to revolutionary technological innovation [8-11]. If the advances 

in understanding bifurcation behavior of liquid-solid interface of 
“Yakam Matrix” will follow the some trajectory of waves of water, 
granular compaction and dynamics of fluids at all scales, then we 
are still just at the beginning “Yakam Matrix”.

The study of networks pervades all of science, from fluids 
mechanics. The nonlinear dynamics: systems can often be modelled 
by differential equations dx/dt=v(x), where x(t)=(x1(t), …, Xn(t)) is 
a vector of state variables, t is time, and v(x)=(V1(x),…, Vn(x)) is a 
vector of functions that encode the dynamics. 

TERMINOLOGY AND CONCEPTS
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Where 2ck γ= . In order words, the oscillation and stagnation of 

water through porous of granular are desynchronized completely 
until the coupling strength K exceeds a critical value ck . After 
that, the population splits into a partially synchronized three 
dimensional state. 

[ ]

u v w
x x x
u v wj
y x x
u v w
w x x

 ∂ ∂ ∂
 ∂ ∂ ∂ 
∂ ∂ ∂ =  ∂ ∂ ∂
 
∂ ∂ ∂ 
 ∂ ∂ ∂ 

CONCLUSION

The partials derivatives of x, y, z, in respect to u, v, w are found 
by differentiation of displacement of water through porous of 
granulars.  
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dV dxdydz J dudvdw= =

 

We limit our investigation in Hilbert-Sobolev Spaces specified by 
(Ω)={𝑢 ∈ 𝐿2(Ω):𝐷𝛼𝑢 ∈ 𝐿2(Ω), 1 ≤ 𝛼 ≤ 𝑠} 

For our study 𝐻0
1 (Ω) is “noyau” of operator of 1(Ω) in (𝜕Ω) if p=2. 
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