

ISSN: 2684-1622

Journal of
Eye Diseases and
Disorders

OPEN ACCESS Freely available online

Opinion Article

Inflammatory Biomarkers in Tears of Diabetic Patients with Dry Eye Disease

Yuan Inomata*

Department of Ophthalmology, University of Heidelberg, Heidelberg, Germany

DESCRIPTION

Dry Eye Disease (DED) is a multifaceted condition characterized by a disturbance in the tear film and ocular surface. It often manifests with symptoms such as irritation, redness and blurred vision. Among various systemic conditions linked with DED, Diabetes Mellitus (DM) is a significant contributor due to its impact on tear production and ocular surface health. The interaction between diabetes and DED involves various clinical parameters that need thorough investigation to enhance management strategies and improve patient outcomes.

The tear film plays a fundamental role in maintaining ocular surface integrity. In diabetic individuals, alterations in tear film stability are frequently observed. Schirmer's test, a standard diagnostic tool, reveals decreased tear production in these patients. Additionally, increased tear film osmolarity is noted, which is a hallmark of DED. Hyperglycemia-induced damage to the lacrimal gland and neuropathy affecting tear reflex mechanisms are primary contributors to these changes.

Tear Breakup Time (TBUT) is another critical parameter, indicating the stability of the tear film. A shortened TBUT is often reported in diabetics with DED. This reduction is linked to a decrease in the mucin layer's quality, which is vital for tear adherence to the ocular surface. Evaluating TBUT provides insights into the extent of tear film instability in diabetic patients.

Corneal sensitivity is frequently compromised in diabetic individuals due to peripheral neuropathy. This impairment results from chronic hyperglycemia-induced damage to corneal nerves, reducing reflexive tear production and blink rate. Clinical assessment of corneal sensitivity using tools like the Cochet-Bonnet aesthesiometer reveals significant reductions in diabetic patients compared to non-diabetics. The diminished corneal sensation further exacerbates the risk of ocular surface damage and delayed wound healing.

Chronic inflammation is a central aspect of DED pathophysiology, particularly in diabetic patients. Elevated levels

of pro-inflammatory cytokines such as interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF- α) are frequently detected in tear samples. These markers contribute to a vicious cycle of ocular surface inflammation and tear film instability. Assessing these inflammatory markers helps in understanding the severity of DED and tailoring therapeutic interventions.

Meibomian Gland Dysfunction (MGD) is a prevalent condition in diabetics with DED, characterized by altered lipid secretion that compromises tear film stability. Studies utilizing meibography and lipid layer thickness analysis indicate that diabetics exhibit higher rates of MGD. The structural and functional abnormalities in meibomian glands are associated with metabolic changes in diabetes, contributing to evaporative dry eye. Addressing MGD is essential for improving tear film stability in these patients.

Fluorescein and lissamine green staining are commonly used to evaluate ocular surface damage in DED. Diabetic individuals frequently present with higher staining scores, indicating increased epithelial cell loss and compromised ocular surface integrity. The underlying mechanisms include reduced corneal epithelial cell turnover and delayed healing processes, both of which are exacerbated by persistent hyperglycemia. Regular monitoring of staining patterns aids in assessing disease progression and therapeutic efficacy.

Alterations in tear protein and lipid composition are observed in diabetics with DED. Proteomic studies reveal reduced levels of tear-specific proteins such as lactoferrin and lysozyme, which are essential for maintaining ocular surface health. These deficiencies are linked to impaired lacrimal gland function and systemic metabolic disturbances in diabetes. Additionally, lipid layer analysis demonstrates abnormalities in composition and thickness, contributing to increased tear evaporation. Addressing these biochemical alterations is pivotal for restoring tear film homeostasis.

Advanced Glycation End Products (AGEs) and oxidative stress play a significant role in the pathogenesis of DED in diabetics. AGEs accumulate in ocular tissues due to prolonged

Correspondence to: Yuan Inomata, Department of Ophthalmology, University of Heidelberg, Heidelberg, Germany, E-mail: yuan@inomata.de

Received: 26-Nov-2024, Manuscript No. JEDD-24-27865; **Editor assigned:** 28-Nov-2024, PreQC No. JEDD-24-27865 (PQ); **Reviewed:** 12-Dec-2024, QC No. JEDD-24-27865; **Revised:** 19-Dec-2024, Manuscript No. JEDD-24-27865 (R); **Published:** 26-Dec-2024, DOI: 10.35248/2684-1622.24.9.264

Citation: Inomata Y (2024). Inflammatory Biomarkers in Tears of Diabetic Patients with Dry Eye Disease. *J Eye Disord*. 9:264.

Copyright: © 2024 Inomata Y. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

hyperglycemia, leading to structural and functional damage. Furthermore, oxidative stress induces cellular damage and inflammation, exacerbating DED symptoms. Biomarkers such as Malondialdehyde (MDA) and Superoxide Dismutase (SOD) activity are frequently assessed to evaluate oxidative stress levels. Targeting these mechanisms offers potential therapeutic benefits.

Optimal glycemic control is essential for mitigating the impact of diabetes on ocular health. Studies demonstrate a correlation between poor glycemic control, as indicated by elevated HbA1c levels and the severity of DED symptoms. Improved glycemic management not only reduces systemic complications but also

alleviates ocular surface dysfunction. Regular monitoring of blood glucose levels and patient education on diabetes management play a pivotal role in addressing DED.

Advancements in imaging technologies have enhanced the understanding of DED in diabetic patients. Optical Coherence Tomography (OCT) provides detailed visualization of the tear meniscus and corneal epithelial thickness. Additionally, confocal microscopy allows *in vivo* assessment of corneal nerve density and morphology. These techniques facilitate early detection of subclinical changes, enabling timely intervention and improved outcomes.