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Optical imaging approaches offer the potential for non-invasive 
diagnosis and real-time, high-resolution, in vivo disease monitoring. 
Usually using UV to near-infrared (NIR) light, optical imaging 
uses wavelength-dependent interactions (scattering, absorption 
and fluorescence) in tissues to yield unique contrasts. 650-900 nm 
wavelength NIR optical fluorescence imaging has become a particularly 
attractive technology for disease diagnosis, treatment monitoring, 
and drug screening due to its low absorption, and significant 
autofluorescence imaging depth in vivo [1-3]. However, the lack of 
significant endogenous fluorescence contrast limits the diagnosis 
ability of this technology. Therefore to increase the signal-to-noise 
ratio and improve imaging resolution, the development of exogenous 
NIR optical contrast agents is a necessity [4-6].

Currently the only NIR fluorescent contrast agent approved by 
the United States Food and Drug Administration (FDA) for direct 
administration in medical diagnostics is Indocyanine Green (ICG) 
[7,8]. ICG is a water-soluble, amphiphilic tricarbocyanine dye with the 
adsorption and emission maxima around 780 and 810 nm, respectively 
[9]. Due to its low toxicity (LD50 of 50-80 mg/kg for animal subjects) 
[10] and capacity to absorb and emit in the NIR spectral range, ICG is 
used clinically as a contrast agent for visualizing blood and clearance, 
studying liver function, and guiding biopsies [11-13]. Despite its many 
advantages, ICG is still limited by several drawbacks: i) it aggregates 
easily into amphiphilic molecules in aqueous solutions to induce self 
quenching and low quantum yields [14]; ii) when administered in 
molecular form, ICG is rapidly cleared from the body with a short 
half-life about 2-4 min [15-17]; iii) it often binds to proteins leading to 
rapid agglomeration [11]; iv) it undergoes oxidation and dimerization, 
resulting in decreased absorption/emission and variability in the 
maximum absorption wavelength [18,19]; v) it is instable in aqueous 
solutions and prone to photobleaching under light exposure [16,20]; 
vi) ICG lacks target moieties for molecular imaging. To address these
intrinsic drawbacks of ICG for in vivo imaging, a potential approach is 
to encapsulate ICG into nanocarriers that provide increased stability, 
protection from nonspecific plasma protein binding, prolonged 
circulation times and potential targeting. This editorial will focus on 
some of recent advances in the design of NIR contrast agents based on 
nanovector encapsulation of ICG.

There are many of reports that ICG encapsulators, such as (poly 
(lactic-coglycolic acid)(PLGA) nanoparticles (diameter ~360 nm) 
and silica-polymer composite microcapsules (diameter ~0.6 to 2 μm) 
improve the molecular instability of ICG and prolong its plasma half-
life [21,22]. However, both of these nanoparticles are limited in size 
for in vivo tumor imaging depending on their EPR effects. Recently, 
several publications have reported promising results using smaller 
nanoparticles to encapsulate ICG for in vivo imaging. For example, 
Zheng et al. [23] developed ICG encapsulated PLGA-lipid nanoparticles 

conjugated with folic acid (FA) and demonsstrated their use as 
NIR contrast agents for tumor diagnosis and targeted imaging [23]. 
Altinoglu et al. also synthesized biodegradable calcium phosphosilicate 
nanoparticles (CPNPs) and demonstrated that small size (16 nm) 
ICG-encapsulating CPNPs have significantly better contrast agent 
optical properties than free fluorophores for tumor imaging [24]. 
Other inorganic delivery systems using silica nanoparticles have been 
developed to encapsulate ICG, and the ICG–SiO2 nanoparticles have 
the potential to be used as contrast agents for optical NIR imaging as 
well [25]. 

Among these nanocarriers, micelles are one of the successful 
types of drug delivery systems for in vivo applications due to their 
small size (approximately 10-100 nm), which reduce clearance by 
the reticuloendothelial system (RES) and allow for an enhanced EPR 
effect [26,27]. Therefore, the encapsulation and stabilization of ICG 
dye as a contrast agent in micellar systems is of particular interest. For 
example, Pluronic F-127 (PF-127) polymeric micelles are approved 
by the FDA and have been successfully demonstrated to encapsulate 
and stabilize ICG as an NIR contrast agent for optical imaging 
[28,29]. Encapsulation of ICG within various micellar systems was 
also investigated by Kirchherr and co-workers, and they found many 
micellar systems improved the optical properties and stability of the 
ICG [30]. More interestingly, Zheng et al. [23] have recently reported 
a dual-functional ICG-PL-PEG agent with several unique features for 
optical imaging and photo-therapy [31]. This may emerge as a new 
strategy for combining tumor treatment and diagnosis together, using 
nanovectors with ICG.

In summary, this editorial discussed recent developments in 
nanocarrier ICG contrast agents for NIR optical imaging. Here just 
some of the areas are collected in terms of subjects and interests but it 
is hoped that every reader will find something of interest to them.
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