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Introduction

WHI-P131 is a dual-function inhibitor of JAK3 and EGF 

receptor tyrosine kinases [20].  It is being developed as a potential 

anti-cancer and immunomodulatory drug candidate [28,26]. 

WHI-P131 demonstrated potent in vivo anti-inflammatory and 

immunomodulatory activity in several preclinical animal models 

[3-7,13,14,26]. It has been shown that WHI-P131 exhibits potent 

pro-apoptotic anti-cancer activity against human cancer cells 

with constitutive JAK3/STAT3 activation [1,2,11,12,15,16,19,20] 

and displays chemopreventive properties in animal models of 

gastrointestinal neoplasia [25] and non-melanoma skin cancer 

[21]. WHI-P131 exhibited a favorable pharmacokinetics and safety 

profile in preclinical studies in rodents and monkeys [24].  Forty-

eight distinct therapeutic liposomal nanoparticle constructs of 

WHI-P131 have been prepared and a PEGylated lead formulation 

(viz.: WHI-P131 [NP]) showed significant in vitro cytotoxicity against 

primary human leukemia cells from B-lineage acute lymphoblastic 

leukemia (ALL) and chronic lymphocytic leukemia (CLL) patients 

as well as potent in vivo anti-leukemic activity in a SCID mouse 

xenograft model of highly aggressive and radiochemotherapy 

resistant ALL [23].  WHI-P131 [NP] was substantially more potent in 

vivo than non-encapsulated WHI-P131 and drug-free nanoparticles 

exhibited no anti-cancer activity in the SCID mouse xenograft model 

[23].  The purpose of the present study was to further evaluate the 

therapeutic potential of WHI-P131 [NP] against chemotherapy-

resistant breast cancer in the MMTV/Neu transgenic mouse model 

of metastatic ErbB2/HER2+ breast cancer. In MMTV/Neu transgenic 

mice, the expression of wild-type rat Her2/neu gene is forced in the 

mammary gland under the control of the MMTV long terminal repeat. 

Neu transgenic mice develop rapidly progressive and metastatic 

breast cancer [22,27]. WHI-P131 [NP] was substantially more potent 

than the standard chemotherapy drugs paclitaxel, gemcitabine, and 

gefitinib at clinically applicable or higher dose levels and resulted 

in shrinkage of both primary and metastatic tumors in MMTV/Neu 

transgenic mice. These experimental results demonstrate that the 

nanotechnology-enabled delivery of WHI-P131 shows therapeutic 

potential against breast cancer.

Materials and Methods

Preparation of WHI-P131 [NP]

A PEGylated liposomal nanoparticle (NP) formulation of GMP-
grade WHI-P131 (Encapsulated WHI-P131 concentration: 30.1±0.8 
mg/mL; Approximate particle size after extrusion: 100 nm) 
was prepared using lipid film hydration, as described [23]. The 
liposome bilayer membranes of the nanoparticles were composed 
of dipalmitoylphosphatidylcholine (DPPC) and cholesterol [23]. 
Polyethylene glycol (PEG)-derivatized lipid 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-n-[poly(ethylene glycol) 2000] 
(DSPE-PEG

2000
) was also incorporated into the membranes for the 

purpose of enhanced steric stabilization [23]. 

Animals

We used the well established transgenic mouse model of ErbB2/
HER-2+ chemotherapy-resistant breast cancer [22,27]. MMTV/
Neu mice [FVB/N-TgN (MMTV neu) 202MUL; Jackson Laboratory, 
Bar Harbor, Maine] [22,27] were bred to produce multiple litters. 
All mice were housed in microisolator cages (Lab Products, Inc., 
Maywood, NY, USA) containing autoclaved bedding in a controlled 
specific pathogen-free (SPF) environment (12-h light/12-h dark 
photoperiod, 22±1°C, 60±10% relative humidity), which is fully 
accredited by the USDA (United States Department of Agriculture). 
Animal studies were approved by Parker Hughes Institute Animal 
Care and Use Committee and all animal care procedures conformed 
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Abstract

The quinazoline derivative 4-(4’-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P131/JANEX-1; CAS 
202475-60-3) is a dual-function inhibitor of Janus kinase 3 (JAK3) and Epidermal Growth Factor (EGF) receptor kinase. 
A PEGylated liposomal nanoparticle formulation of GMP-grade WHI-P131 exhibited potent in vivo activity against breast 
cancer cells. Notably, this therapeutic nanoparticle formulation of GMP-grade WHI-P131 was substantially more effective 
than the standard chemotherapy drugs paclitaxel, gemcitabine, and gefi tinib against chemotherapy-resistant breast 
cancer in the MMTV/Neu transgenic mouse model. These experimental results demonstrate that the nanotechnology-
enabled delivery of WHI-P131 shows therapeutic potential against breast cancer.

http://dx.doi.org/10.4172/2157-7439.1000101


Citation: Dibirdik I, Yiv S, Qazi S, Uckun FM (2010) In vivo Anti-Cancer Activity of a Liposomal Nanoparticle Construct of Multifunctional Tyrosine 
Kinase Inhibitor 4-(4’-Hydroxyphenyl)-Amino-6,7-Dimethoxyquinazoline. J Nanomedic  Nanotechnolo 1: 101. doi:10.4172/2157-7439.1000101

J Nanomedic Nanotechnol
ISSN:2157-7439 JNMNT an open access journal

Volume 1• Issue 1•1000101

to the Guide for the Care and Use of Laboratory Animals (National 
Research Council, National Academy Press, Washington DC 1996, 
USA).

Treatment of MMTV/Neu mice 

Animals carrying one or more tumors were randomly placed 
in the study. Tumor-bearing mice were randomly assigned to PBS, 
WHI-P131-free vehicle, NP formulation of GMP-grade WHI-P131, 
paclitaxel (Taxol), gemcitabine (Gemzar) or gefinitib (Iressa) 
treatment groups. Chemotherapeutic drugs were obtained from 
the Parker Hughes Cancer Center Pharmacy (50 mg/kg, N= 9; 
100 mg/kg, N= 9; 150 mg/kg, N= 8). WHI-P131 [NP] (50 mg/kg, 
N= 9; 100 mg/kg, N= 9; 150 mg/kg, N= 8) was administered by 
daily intraperitoneal injections on 5 consecutive days per week. 
Paclitaxel/Taxol (N= 27) was administered intraperitoneally on days 
1, 3, and 5 of each week at a dose level of 6.7 mg/kg. Gemcitabine 
(N= 34) was administered on days 1 and 8 at a dose level of 33.7 
mg/kg. Gefinitib (N= 20) was suspended in distilled water and 
administered at 75 mg/kg dose in 0.2 ml by gastric gavage with a 
20-gauge gavage needle. Control group (N= 38) included mice that 
were treated daily for 5 days/week with ip injections of WHI-P131-
free vehicle (n= 9), WHI-P131 [NP] at the suboptimal 50 mg/kg dose 
level (N= 9) or PBS (N= 20).  Tumor growth was determined by the 
measurement of tumors with a caliper in three dimensions three 
days a week and expressed as tumor volume in cubic millimeters 
(mm3). Tumor volumes were calculated using the formula for the 
volume of a prolate spheroid, V= 4/3 x 3.14 x length/2 x width/2 x 
depth/2. Tumor size for each tumor was normalized to the starting 
volume for that particular tumor. 

Statistical analysis

Tumor volume measurements were taken at day 1, 7 and 14 
for control mice and those treated with WHI-P131 [NP], Gefinitib, 
Gemcitabine and Taxol. To investigate the treatment effect on 
the growth of tumors across 7 and 14 days we used an ANOVA 
model that accounted for variance components between mice and 
between initial tumor volumes at day 1.  To control for mouse to 
mouse differences a random effect was included in the model using 
the REML method (Restricted or residual maximum Likelihood) for 
determining the variance component of this effect. Considerable 
variation was observed in tumor volumes at day 1 of the experiment, 
therefore, to assess the effect of tumor volume at day 1 and 
subsequent growth of tumors at days 7 and 14, the day 1 volume was 
included as a co-variate for the ANOVA models performed at days 
7 and 14.  A second interaction co-variate in the model controlled 
for differences in tumor volumes that were dependent on treatment 
(Day1*treatment interaction).  These three control factors enabled 
testing of differences in tumor growth that accounted for mouse 
differences, multiple measurements taken from a mouse and tumor 
volume differences to follow growth over 14 days.  We examined 
the distribution of the residuals of the model for equal dispersion 
around the line of best fit.  We normalized all tumor volumes to day 
1 measurements and investigated the specific treatment effect on 
the growth of tumors across 7 and 14 days using Student’s T-tests 
(2-tailed, corrected for unequal variances; Excel formula).  P-values 
less than 0.05 were deemed significant without correction for 
multiple comparisons as the True Discovery Rate calculated for all 
the tests performed exceeded 90%.  The PBS, vehicle, and low dose 
WHI-P131 [NP] groups were combined into a single control group.  
We performed the following comparisons: Control vs. WHI-P131 
[NP]; control versus Gefinitib, Gemcitabine and Taxol; WHI-P131 
[NP] versus Gefinitib, Gemcitabine and Taxol.  Two sets of T-tests 
were performed at 7 and 14 days.

Results

We examined the in vivo anti-cancer activity of the NP formulation 

of GMP-grade WHI-P131 in the MMTV/Neu transgenic mouse model 

of HER2+ metastatic breast cancer. At a 50 mg/kg dose level, 

WHI-P131[NP] (like WHI-P131-free vehicle or PBS) did not exhibit 

significant in vivo anti-tumor activity capable of preventing tumor 

progression. However, at 100-150 mg/kg dose levels, WHI-P131 [NP] 

caused tumor shrinkage (Figure 1) and prevented the tumor growth.  

We applied an ANOVA model to compare the overall effect of control 

and drug treatments showing that 86% of the variation in tumor 

volumes was explained by the model at day 7 (P<0.0001) with a 

significant effect of treatment (F
4,134

= 7.813, P<0.0001) taking into 

account the effect of differences in tumor volumes at day 1 (F
1,209

= 

388, P<0.0001).  Examination of the ANOVA model at 14 days showed 

that 64% of the variation was explained (P<0.0001) with significant 

effects of treatment (F
4,164

= 9.755, P<0.0001), day 1 volume (F
1,208

= 

141, P<0.0001) and day1*treatment interaction (F
4,205

= 3.509, P= 

0.009).  Since there were significant effects for day 1 tumor volumes 

for both 7 and 14 day treatments and significant treatment effects 

accounting for these observed differences in day 1 measurements, 

we normalized all tumor volumes to day 1 measurements for 

statistical comparisons using T-tests of specific treatment groups. 

Specific comparisons of WHI-P131 [NP] with other drug treatments 

showed that it was significantly more effective than paclitaxel, 

gemcitabine, or gefitinib at the applied dose levels and treatment 

schedules (p<0.0001 for all comparisons), as documented by the 

significantly smaller day 7 and day 14 normalized tumor volumes 

Figure 1: Effect of Nanoparticle Formulation of GMP-grade WHI-P131 
on the Growth of Mammary Tumors in MMTV/Neu Transgenic Mice. 

WHI-P131 [NP] (100 mg/kg) treatment resulted in signifi cant tumor regression 
within 2 weeks in the depicted tumors of mouse # 67191 (A and B) and # 

67083 (C and D). Normalized post-treatment tumor volumes were 0.32 (Day 1 

volume = 1726 mm3, Day 14 volume = 546 mm3) for mouse # 67191 and 0.35 
(Day 1 volume = 837 mm3, Day 14 volume = 291 mm3) for mouse #67083.
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in the WHI-P131 [NP] treatment group compared to other groups 

(Figure 2, Table 1). As shown in Figure 2 and Table 1, there was a 

significant decrease in tumor volume and arrest of tumor growth 

for WHI-P131[NP] treated mice (normalized volumes: 0.77±0.04 

on day 7, P= 7.5x10-9 and 0.70±0.06, on day 14, P= 1.5x10-7 and 

continuation of growth for the other three drug treatments. While 

the tumor sizes consistently increased between days 7 and 14 

for control mice, tumor shrinkage was observed in some of the 

WHI-P131 [NP] treated mice (Figure 2). It is noteworthy that the 
initial tumor volumes in the WHI-P131 [NP] treated test group were 
significantly larger than in the control group or chemotherapy 
group (1004±98 mm3 vs. 675±60 mm3 (Control) and 518±32 mm3 
(Chemotherapy) (Table 1).  Taken together, these results illustrate 
that GMP-grade WHI-P131 has promising in vivo anti-cancer activity 
in this chemotherapy-resistant breast cancer model when used as a 
nanoparticle formulation.  

Discussion

Liposomal nanoparticle therapeutics containing cytotoxic 

agents may provide the foundation for potentially more effective 

and less toxic anti-cancer treatment strategies due to their 

improved pharmacokinetics, reduced systemic toxicity, and 

increased intratumoral/intracellular delivery [8,9]. Here we report 

the anti-cancer activity of a PEGylated nanoparticle formulation of 

GMP-grade WHI-P131 in the MMTV-neu transgenic mouse model 

of chemotherapy-resistant breast cancer. Notably, this therapeutic 

nanoparticle formulation of GMP-grade WHI-P131 was substantially 

more effective than the standard chemotherapy drugs paclitaxel, 

gemcitabine, and gefitinib against chemotherapy-resistant breast 

cancer in the MMTV/Neu transgenic mouse model. These findings 

demonstrate that the nanotechnology-enabled delivery of GMP-

grade WHI-P131 shows potential for treatment of breast cancer.

Overexpression of ErbB2 (Her-2/neu) is associated with 

chemotherapy resistance and poor treatment outcome in breast 

cancer [10,29].  Chemotherapy resistance of ErbB2/Her2+ breast 

cancer cells has been attributed to activation of phosphatidylinositol 

3 kinase (PI3-Kinase)/AKT anti-apoptotic signaling pathway and 

amplified expression of the resistance-associated survivin protein 

[10,29]. Use of the humanized recombinant monoclonal antibody 

trastuzumab/Herceptin binding the extracellular domain of the 

ErbB2/HER-2 receptor results in decreased chemoresistance and 

improved treatment outcome of ErbB2/HER-2+ breast cancer 

[17]. Our findings provide unprecedented evidence that the 

multifunctional tyrosine kinase inhibitor WHI-P131 is an active 

agent against chemotherapy-resistant EbB2/HER-2+ breast cancer in 

the well-established MMTV-neu transgenic mouse model.
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