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Abstract
Microfiltration performance has been analysed by evaluating the influence of three macro-compounds as a 

function of the cross-flow velocity (CFV), transmembrane pressure (TMP) and pore size of the membranes. Four 
mathematical models were evaluated to relate the permeate flow rate (Jp) to the concentration of the macro-
compounds in the retentate (Cb) during filtration in concentration mode. Pectin has a greater impact than cellulose 
and lignin on the permeate flux (Jp). The largest value of K2 was found for pectin in the model 1

1 2
−= + ⋅p bJ K K C . The 

optimum operating conditions and pore size to reduce fouling of the membranes depend on the pore size to particle 
size ratio and the physicochemical interactions between the solute and membrane. The mathematical model is 
useful in the region where the permeate flow is nearly independent of pressure, the pore size and cross-flow velocity 
but is dependent on the diffusional phenomenon of mass transfer.

Keywords: Membrane fouling; Cross-flow microfiltration; Model
solution; Mathematical model; Fruit juice

Nomenclature
ap     Equivalent spherical radius of macromolecule (m)

Aw   Water activity

a, b   Parameters in model for viscosity as a function of 
concentration, Equation 3

C    Macro-compound concentration

C0   Initial macro-compound concentration

Cb   Macro-compound concentration in the retentate

CFM Cross-flow microfiltration

CFV  Cross-flow velocity

D    Diffusion coefficient

dp    Spherical diameter (nm)

Jp    Permeate flow rate (m3·m-2·s-1)

K    Boltzmann constant

K1    Intercept of Equation 9 (m·s-1)

K2    Slope of Equation 9 (kg·m-2·s-1)

LM   Low methoxyl

MW  Molecular weight (g·mol-1)

PID  Proportional integral derivative

PT   Pressure transmitters 

P-value Probability value

Plof   Probability value lack of fit

R2   Correlation coefficient

t     Time

T    Absolute temperature (K)

TMP Transmembrane pressure (kPa)

TSS  Total soluble solids

µ    Dynamic viscosity (kg·m-1·s-1)

VCR  Volumetric concentration ratio

Vd   Dead volume

Vp   Volume of permeate recovered

VT   Total volume of solution treated

% w/v  Weight/volume percent

Introduction
Cross-flow microfiltration (CFM) has been successfully applied 

to process an important variety of fruit juices, including those of 
tropical fruits, to minimize thermal damage of sensitive compounds 
[1,2], to preserve nutritional and organoleptic properties, to 
provide microbiological stability [3,4] and to develop new products, 
making subsequent purification processes easier. However, during 
microfiltration, the membranes tend to foul, which impacts the 
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economic and commercial viability of the process by reducing the 
specific permeate flow. 

In the microfiltration of fruit juices, fouling is mainly attributed 
to the presence of suspended solids, including fragments of cell 
walls containing pectin, cellulose, smaller amounts of hemicellulose, 
hydroxyproline-rich proteins and lignin [5]. Potential phenomena 
include adsorption, precipitation, accumulation of these macro-
compounds in the membrane porous structure, hydrodynamic forces, 
and the physicochemical interaction between these solutes and the 
membrane materials [6]. 

Aggregates, fibrous networks, lamellar structures or gels may foul 
the membranes, creating pore blockage and gel polarization, causing a 
decrease in the permeate flow through the membrane. Concentration 
polarization phenomena associated with the accumulation of macro-
compounds at the surface of the membrane also reduces permeate 
flow. Some authors have attempted to improve permeation flux using 
pulsatile flow, counter-flows, turbulent flow, an external electric 
field and enzymatic hydrolysis [7-10]. Nonetheless, all juices behave 
differently, partially as a function of the concentration of fouling 
compounds; therefore, more research is needed to determine which 
macromolecules and interactions are most responsible for the fouling 
of the membranes. In this research the microfiltration performance has 
been analyzed by evaluating the influence of three macro-compounds 
-pectin, cellulose, and lignin- either alone or in mixture, as a function 
of the cross-flow velocity (CFV), transmembrane pressure (TMP) 
and pore size of the membranes in order to develop a mathematical 
model that relates the permeate flux to the concentration of macro-
compounds in the model solutions. 

Materials and Methods
The following materials were used for preparing model fluids: 

commercial citric pectin of high esterification of 70 to 75%, type A of 
rapid fastening (Ceamsa, Pontevedra, Spain) and GENU® pectin type 
121 of slow fastening (CP Kelco product, file No. 0001064-01). These 
materials are high ester pectin products extracted from citrus peel and 
are standardized by the addition of sucrose. The texture was a free-
flowing powder with less than 1% gum, a particle size less than 0.25 
mm based on a 0.25 mm test sieve.. Insoluble cellulose, white fibrous 
powder, 97% pure, pH 5.0-7.5 (in solution at a concentration of 10%), 
and water retention capacity of 1:5 (Tecnas product, PT-823) was used 
in addition to water-soluble lignin alkali with a low sulfonate content, 
with 4% sulphur impurities and a pH of 10.5 at 3 wt. % lignin in water 
containing no reducing sugar (Sigma-Aldrich, PT-471003).

Preparation of the model solutions

Model solutions of pectin, cellulose and lignin were prepared based 
on the content found in tropical fruit juice.

Pectin solutions: Sucrose and pectin were mixed as a powder and 
added to 55 – 110-L of deionized water at 25ºC, depending on the 
pore size used, with constant agitation until the pectin was solubilized. 
Sucrose was added to obtain a solution containing 0.5 to 1.5% w/v of 
pectin and approximately 10% w/v sucrose to obtain a soluble solids 
content of 10 ± 0.5 ºBrix as measured by a refractometer. The pH of the 
solution was adjusted to 4 ± 0.11 using food-grade sodium hydroxide. 

Cellulose solutions: Cellulose (0.04 to 0.25%w/v) and 10% sucrose 
were blended in the dry form and were added to a tank with deionized 
water at 25°C. After gauging the volume (55-110-L) and adjusting the 

soluble solids (°Brix), the pH of the solution was standardized to 4 
± 0.11 using food-grade citric acid. To prevent sedimentation of the 
cellulose, the solution was subjected to constant stirring.

Lignin solutions: Lignin (0.033 to 0.31% w/v) was premixed with 
sucrose (10%) and then solubilized in a tank with deionized water at 
35°C. After gauging the volume (55 - 110-L) and adjusting the soluble 
solids, the pH of the solution was adjusted to 4 ± 0.11 using food-grade 
citric acid.

Mixture of components solutions: Different mixtures of these 
solutions were used, some with two solutions and others with three 
solutions. For binary mixtures (cellulose and pectin), pectin was first 
mixed in the dry form with sugar, and then cellulose was added before 
adding to a tank with deionized water. For ternary mixtures solutions, 
after solubilizing pectin and cellulose in deionized water, lignin was 
slowly added with constant stirring following the procedure for the 
adjustment of soluble solids and pH, as mentioned above.

Physical parameters evaluated

The physical parameters were evaluated in the feed, permeate, 
and retentate streams to obtain the values of pH, density, viscosity 
and soluble solids, according to classical procedures [11]. An Abbe 
refractometer (Atago® model 1T, Japan, measurement accuracy of brix 
of ±0.5%) was used to determine the soluble solids. The viscosity of the 
samples was determined at 35°C using a Cannon-Fenske® viscometer 
and at 20°C with a Brookfield DV-III Ultra viscometer. A spindle S00 
at 50 rpm with a torque at 10 N-m, was used for the feed and retentate. 
The samples were analysed in triplicate. Then, the viscosity data 
were plotted versus concentration using non-linear regression with 
SigmaPlot® program 10.

Main physico-chemical characteristics of the model fluids: The 
diffusivity of the macro-compounds through the bulk solution was 
estimated by modeling them as spherical particles. The Brownian 
diffusion coefficient for a spherical particle can be estimated by the 
Stokes-Einstein model as [12] 

3 p

KTD
ðì d

= 		   	   	                                 (1)

where K, T, µ, dp are the Boltzmann constant, absolute temperature, 
solution viscosity, and equivalent spherical diameter of the particle, 
respectively. The equivalent radius (  or the Stokes-Einstein radius, 
is in meters) for pectin and lignin was estimated using (Equation 2) 
[13,14]

( )( )0.5 100.262 0.3 10−= ⋅ − ⋅pa MW 		                    (2)

The viscosity data of pectin and the pectin-cellulose-lignin mixture 
were plotted versus concentration (Cb) using a non-linear regression 
SigmaPlot® program 10, and an exponential relationship was found 
(Equation 3). The correlation coefficient (R2) of the model for the pectin 
solution was 0.9665, with a = 8.00E-04 and b = 9.89E-02, whereas for 
the pectin-cellulose-lignin mixture, R2 was 0.9061, with a = 5.70E-03 
and b = 1.0835. 

 ( )( )1⋅ ⋅ −
= ba exp b C

μ
b

			                 (3)

Therefore, using (Equation 3), we estimated the viscosity according 
to the macro-compound concentration in the retentate (Cb). For 
the range of concentrations assessed in this work, and using the 
corresponding viscosity estimated using (Equation 3), a nearly linear 
relationship between the diffusion coefficient D and the inverse of the 
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concentration was found (Figure 1).

Modeling of the permeation flow and definition of simple fouling 
indicators: During the cross-flow microfiltration, the concentration 
of compounds retained by the membrane can be estimated through 
the volumetric concentration ratio (VCR). A mass balance can be 
established on the basis of the following assumptions: a. there is 
total retention of macromolecules in the retentate and consequently 
no pectin, cellulose and lignin in the permeate, b. there is complete 
mixing of the macro-compounds, and c. the accumulation of solids at 
the membrane surface is negligible with respect to the total mass of 
particles in the retentate. 

The balance is

( ) 0
⋅

=Td C V
dt

				                  (4)

The total volume of solution treated was 

= +T p dV V V 					                     (5)

where pV  is the permeate volume and dV  is the dead volume. 

Integrating both sides of (Equation 4) with the boundary conditions 

00, ,= = = +T p dt          C C       V V V ;         b , ,= = =T dt t          C C       V V

0 0·
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⋅= = 
 
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d

V V
C C  C VCR

V
			                   (6)

where VCR is the volumetric concentration ratio. VCR can be 
measured over time by recording the volume of permeate recovered 
(Vp) because in our close-loop system, the dead volume (Vd) remains 
constant.

Microfiltration

The experimental procedure was performed using two different 
microfiltration systems: one without automation and the other partially 
automated but with the same characteristics in terms of the ceramic 
membrane’s pore size and with the same range of operational variables. 

The devices were provided with tubular ceramic membranes with 
0.2 µm, 0.5 µm, and 0.8 µm pore size diameters (Membralox® 1P19-
40, Pall-Exekia, Bazet, France). Each membrane had the following 
characteristics: 19 channels with a 4·10-3 m internal diameter, 1.2 m 
length, and a total effective filtration area ranging from ​​0.22 m2 to 
0.48 m2 depending on the equipment used. The first procedu r e was 
performed at the Universidad de Costa Rica (San José de Costa Rica) 

[4]. The second procedure was partially automated and was conducted 
at the Universidad del Valle (Cali – Colombia) [15].

The filtration unit had a 50-L feed tank. The start-up process was 
set according to the procedure suggested by Dornier [16]; the permeate 
valve was opened 30 minutes after adjusting the velocity and the 
pressure. The CFM of each model fluid was analysed by continuous 
feeding and constant collection of the permeate without removal of the 
retentate (concentration mode).

Permeation fluxes (Jp) were measured every minute using graduated 
containers of 2-L. All trials were conducted for approximately 2 hours. 
The membrane was washed after each trial until it reached at least 90% 
of the initial permeability (20-L·h-1·m-2·kPa-1). The cleaning procedure 
suggested by Membralox [17] was slightly modified; in this case, 5 g·L-1 
of hydrogen peroxide (H2O2) was added to a sodium hydroxide (NaOH, 
2% w/v) solution. After cleaning the membrane with this solution and 
rinsing it with water, a 5 g·L-1 H2O2 in 0.5 – 1% v/v HNO3 solution was 
used for a second cleaning, according to Gan et al. [18,19]. This cleaning 
formula can rapidly break down tenacious surface deposits and does 
not affect the ceramic membrane. The entire cleaning procedure was 
conducted at 90 kPa and at cross-flow velocity of 5.0 m·s−1. 

If the membrane had not reached at least 90% of its initial 
permeability, it was placed in an oven at 300°C until the organics were 
oxidized and was then cleaned with 0.5 – 1% v/v nitric acid (HNO3) 
and 5 g·L-1 H2O2 at 50°C for 20 minutes on each side of the membrane 
(permeate and retentate).

Experimental design and data analysis

The statistical analysis was made based on the response surface 
implemented Minitab 16 software in order to analyze the influence of 
three macro-compounds -pectin, cellulose, and lignin- either alone or 
in mixture, as a function of cross-flow velocity (CFV), transmembrane 
pressure (TMP) and ceramic membrane pore size and develop a 
mathematical model for predicting the fouling mechanism of the 
ceramic membranes and the permeate flow behavior. Additionally, 
an analysis of variance (ANOVA) and contour graphs were prepared 
to obtain the statistically significant effects of the variables, and 
interactions among them. The models to describe the decline of 
permeate flux with Cb were validated according to the P-value, Plof and 
graph of the residuals. 

In a Doehlert network for alone compounds [20-23], which 
describes a spherical experimental domain and stresses uniformity in 
space filling, the number of levels is not the same for all variables. This 
property allows a free choice of the factors to be assigned to a large or a 
small number of levels. As a general rule, it is preferable to choose the 
variable with the stronger effect, in this case, the CFV has 6 levels (3 
m·s−1, 3.67 m·s−1, 4 m·s−1, 4.33 m·s−1, 4.67 m·s−1, and 5 m·s−1), the TMP 
has 5 levels (90 kPa, 168 kPa, 245 kPa, 323 kPa, and 400 kPa), and pore 
size only has 3 levels (0.2 µm, 0.5 µm, and 0.8 µm). Duplicates were 
performed on the axial and central points. 

The Box-Behnken design was used for different mixtures of 
the macro-compounds [24], in this case, the 2k factorial design was 
combined with incomplete blocks to reduce the number of experiments 
to 15 with three replicates in the center. Each factor had 3 levels: TMP 
(180 kPa, 255 kPa, and 330 kPa), pectin concentration (0.25%, 0.5%, 
and 0.75%) and cellulose concentration (0.04%, 0.06%, and 0.08%) 
which allowed to determine the effect of the factors on each response.

y = 1E-10x - 4E-12
R² = 0.9997
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Figure 1: Relation between the inverse of the mass concentration and the diffusivity of the pectin solutions.Figure 1: Relation between the inverse of the mass concentration and the 
diffusivity of the pectin solutions.
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Pectin-cellulose-lignin mixtures, were used with a mixture simplex 
lattice design [2,3]. The pectin concentration was between 0.44% and 
0.717%, cellulose was between 0.04% and 0.25% and lignin was between 
0.033% and 0.31%.

Results and Discussion
Main physico-chemical characteristics of the model fluids

In Table 1, the main physico-chemical properties of each of the 
flow streams are shown during microfiltration of the pure model 
solution of pectin, cellulose, lignin, and some combination of macro-
compounds. All solutions were prepared with sucrose at the same total 

soluble solids level (TSS) (10.5 ± 0.5) with an initial concentration of 
macro-compounds corresponding to the average content found in fruit 
juices.

The density of the solutions remained almost constant during 
the CFM experiments. For all solutions, the viscosities varied greatly 
in the feed, permeate and retentate. The permeate viscosity remained 
lower and constant during the entire microfiltration time, whereas 
viscosity increased steadily in the retentate, according to the volumetric 
concentration ratio (VCR).

Because the cellulose settled rapidly, it was not possible to assess 
the suspension viscosity. The Reynolds numbers of the feed and 

Compound Pore size (µm) CFV (m·s-1) STREAM TSS (°Brix) ρ20°C [kg·m-3] µ20°C [Pa∙s] Re

Pectin 10 kg·m-3 0.2, 0.5, 0.8 03-May

Feed
10.53 1046.3 0.1692

74.21– 123.68
(0.049)a (1.66)a (0.008)a

Permeate
8.9

 

0.0028
(0.57)a (0.0015)a

Retentate 20 – 80 min 10.98 0.2109

23.25– 99.22
VCR: 1.19 – 3.45

(0.46)a (0.035)a
11.55 0.54

(0.45)a (0.073)a

Cellulose 1.2 – 4.8 kg·m-3 0.2, 0.5, 0.8 03-May

Feed
10.41 1081.09

   

(0.14)a (58.82)a

Permeate
10.09

 

(0.099)a

Retentate 20 -80 min
10.34

(0.057)a

VCR: 1.20 – 7.72
10.9

(0.071)a

Lignin  0.52 – 3.6 kg·m-3 0.2, 0.5, 0.8 5

Feed
10.3 1045.34 0.00167 7511.42– 12519.04

(0.23)a (3.20)a (3.60E-05)a  

Permeate
10.04

     

(0.17)a

Retentate 20 -80 min
10.47

(0.15)a

VCR:  1.19 – 25.90
10.87

(0.12)a

Pectin, Cellulose    

Feed
10 1093

   

(0.15)a (0.0014)a

Permeate
9.75

 
(0.36)a

Retentate 11.2
VCR: 1.30 – 10.42 (0.59)a

Pectin, Cellulose, lignin 0.8 5

Feed
10.1 1032.44 0.0513

402.51

(0.14)a (2.8374)a (0.0021)a

Permeate
9.23

   

(0.14)a

Retentate 80 – 100 min
10.43

(0.34)a

VCR: 1.20 – 4.36
10.6

(0.32)a

Uchuva juice 0.8 5

Feed
13.13

1056.32 0.0128 1650.5
(0.32)a

Permeate
12.82

 

0.0635 332.7
(0.31)a

Retentate 13.42
0.0695 303.98

VCR: 1.38 – 6.06 (0.98)a

a Between brackets, the standard deviation.

Table 1: Main physical properties of each of the flow streams.
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retentate streams were always in the range of laminar flow except for 
lignin (Table 1), which is consistent with the results of Capannelli et 
al. [25] for the flow of juices with ceramic membranes. According to 
the inversely proportional relationship between Reynolds number and 
the concentration polarization found by Rezaei et al. [26], it can affirm 
that the small increase in the Reynolds number observed between the 
different model fluids allows decrease the fouling velocity.

A change in TSS between the permeate and retentate streams can 
also be observed in Table 1. In pectin solutions, the TSS retention 
was between 6.25 and 12.78%, whereas it increased in the solutions 
of cellulose and lignin to 1.62 - 3.96% and 5.47 - 5.57%, respectively. 
The significant change in TSS values observed in the pectin solution 
is due to the ability of pectin to form a gel in the limit layer at lower 
water activity (Aw) in the presence of sucrose, requiring more amount 
of sucrose. The smallest change in TSS observed for the cellulose 
solution may be due to the ability of cellulose to absorb water without 
interacting with sucrose (which passes through the membrane pores).

According to Sulaiman et al. [27], pectin has an average molecular 
weight of 70,000 Da (g·mol-1), whereas lignin has an average molecular 
weight of 10,000 (g·mol-1) [28]. Based on Equation 2, the equivalent 
spherical diameters of pectin and lignin were 6.90 nm and 2.59 nm, 
respectively; therefore, pectin–cellulose and pectin-cellulose-lignin 
mixtures may be characterized by the size distribution of polydisperse 
particles because the cellulose particles have the greatest size of the 
three macro-compounds. Lu et al. [29], Zhao et al. [30] found that the 
equivalent spherical cellulose nanocrystals size varies between 15 to 40 
nm.

Modeling of the permeation flow and definition of simple 
fouling indicators

Figure 2 shows an example of the experimental permeate flux Jp for 
an aqueous pectin solution as a function of the inverse of the macro-
compounds concentration ( )1−

bC  retained at different transmembrane 
pressures. For all trials, Jp was recorded between 5 and 10 min after 
starting, when the pressure-independent region was reached, and after 
the particle gradient near the membrane was established. The value of 
( )1−

bC  was found using Equation 6.

Taking into account the relationship between viscosity data versus 
concentration, and on the understanding of the diffusivity variation 
with viscosity, macro-compound concentration, gel layer formation 
and mass transfer process during filtration, four empirical models 
were proposed and tested to relate the permeate flux to the macro-
compound concentration (Cb).

To model the permeate flux behavior as a function of concentration, 
was performed linear regressions to find an empirical model for a 
better representation of the variations between the permeate flow and 
the macro-compound concentration in the retentate flow. These four 
models are:

1 2= + ⋅p bJ K K C 				                   (7)

( )1 2= + ⋅p bJ K K ln C 			                 (8)

1 2
1

⋅
 

= +  
 

p
b

J K K
C 				                    (9)

1 22

1
= + ⋅ b

p

K K C
J 				                  (10)

The results from the experimental data analysis obtained with 

each model are shown in Table 2. According to the R2, P-value, Plof 
and graph of the residuals (not shown) obtained from replicates in 
the axial and central points, the empirical model that best described 
the permeate flux behavior Jp in the pressure-independent region for 
both pectin and cellulose was Equation 9. The repeatability study was 
satisfactory for each fluid model analysed, where the parameters K1 and 
K2 were reproducible between trials at different initial concentrations 
of macro-compounds under the same process conditions. The results 
for several experiments with pectin are shown in Table 3.

The membrane fouling process could be due to several factors, such 
as cake formation, adsorptive fouling and pore blocking mechanisms 
that control the permeate flow through ceramic tubular membrane 
and change the membrane characteristics and lead to an increase of 
filtration resistance [31]. The presence of its effects is confirmed by 
the parameters K1 and K2 which determine the velocity of the solvent 
through the fouling layer and the membrane. 

According to Equation 9, the parameter K1 (intercept) has velocity 
dimensions (m·s-1) and may be related to the mass transfer coefficient. 
In this sense, K1 determines the velocity of the solvent through the 
fouling layer and the membrane when Cb is infinite. Parameter K2 
(slope) has mass dimensions per square meters of membrane over 
time (kg·m-2·s-1), the value of K2 depends on how the permeate flux, 
Jp, varies with the inverse of macro-compound concentration, ( )1−

bC . 
Figure 1 shows that the diffusivity of the macro-compound, D, is also 
proportional to ( )1−

bC . Thus, the second term in Equation 9 is related 
to the effect diffusivity on permeate flux. The concentration of macro-
compounds at the membrane surface affects the rate of surface renewal 
and the removal of macro-compounds from the membrane surface by 
the flow of retentate past the membrane. 

The concept of surface renewal of the fouling layer was introduced 
previously [32-38] and was used to describe the process of cross-flow 
ultrafiltration and microfiltration. The process model in this paper 
differs because in the previous model, the increase in concentration of 
the material retained was not considered [36]. 

The values of K1 and K2 determine the velocity of the permeate flux; 
for example, in the case where both parameters have high values, high 
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Figure 2: Cross flow microfiltration of diluted solutions of pectin at different compositions, pressures, 
velocities and sizes of pore.  Procedure 2, pectin type 121.Figure 2: Cross flow microfiltration of diluted solutions of pectin at different 
compositions, pressures, velocities and sizes of pore.  Procedure 2, pectin 
type 121.
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permeate flows are obtained because the flow through the fouling layer 
and the membrane is high, as is the removal of macro-compounds. 
Therefore, the velocity with which macro-solutes diffuse is also greater. 

In the case where K1 is zero, the velocity of the solvent through 
the fouling layer and the membrane decreases drastically, representing 
a possible compaction of the fouling layer by the action of TMP, 
whereby the velocity of the removal of solutes and the permeate flux 
are minimal. In this case, 2 ⋅= p bK J C would be indicative of the 

velocity with which the macro-solutes are deposited on the compact 

layer ( ) 2
0

⋅= = ∫
t

c p bm t K J C  dt   [38]. When K2 is zero, the flow is 

limited by the resistance of the membrane and the concentration of 
macromolecules has no effect [39]. 

The values of K1 and K2 obtained for individual macro-compounds 
showed that pectin had the lowest value of K1 and the highest value of 

MODEL

PECTIN a

(5 – 10  kg·m-3)
CELLULOSEb

(1.2 – 4.8 kg·m-3)

K1*10-5

(m·s-1)
K2*10-5

(kg·m-2·s-1) R2 (%) P-
value

P-Lack 
of fit

K1*10-5

(m·s-1)
K2*10-5

(kg·m-2·s-1)
R2

(%) P-value P-Lack 
of fit

1 2= + ⋅p bJ K K C 1.885 -0.076 0.79 >0.01 0.498 3.874 -0.180 0.63 >0.01 0.783

( )1 2= + ⋅p bJ K K ln C 2.917 -0.798 0.89 >0.01 0.720 3.984 -0.647 0.74 >0.01 0.857

1 2
1

⋅
 

= +  
 

p
b

J K K
C

0.297 7.453 0.95 >0.01 0.927 2.578 1.899 0.79 >0.01 0.901

1 22

1
= + ⋅ b

p

K K C
J -0.22E+04 1.13E+04 0.93 >0.01 0.946 6.2E+03 1.01E+03 0.73 >0.01 0.847

a Values obtained from pectin at 323 kPa and 3.67 m·s-1 with ceramic membranes of 0.2 µm. b Values obtained from cellulose at 245 kPa and 4.67 m·s-1 with ceramic 
membranes of 0.2 µm

Table 2: Estimated parameter values are shown for pectin and cellulose for the models, Equations 7, 8, 9and 10. These are the average values from experiments at 
different initial concentrations of macromolecules, pore size membranes, transmembrane pressures and cross-flow velocities.

Ptm (kPa) CFV(m·s-1) Pore size (µm) K1 (m·s-1) K2 (kg·m-2·s-1) R2

168 3.67 0.2
6.08E-06 6.57E-05

0.9261
-1.51E-07 -2.17E-06

323 3.67 0.2
3.63E-06 7.02E-05

0.9459
-2.64E-07 -2.08E-06

245 4.67 0.2
9.00E-08 6.38E-05

0.9217
-2.56E-07 -1.92E-06

245 4 0.5
6.69E-06 1.00E-04

0.9661
-2.12E-07 -3.12E-07

400 4 0.5
4.41E-06 2.00E-04

0.9583
-2.40E-07 -4.01E-06

323 5 0.5
2.61E-06 2.00E-04

0.9602
-2.89E-07 -4.79E-06

90 4 0.5
4.16E-06 1.00E-04

0.9655
-1.64E-07 -2.45E-06

168 3 0.5
5.40E-06 9.89E-05

0.9773
-1.21E-07 -1.86E-06

323 3 0.5
7.18E-06 8.77E-05

0.9483
-1.61E-07 -2.48E-06

168 5 0.5
2.11E-06 2.00E-04

0.9535
-2.80E-06 -3.89E-06

323 4.33 0.8
3.22E-06 2.00E-04

0.9877
-1.15E-07 -1.92E-06

168 4.33 0.8
2.67E-06 1.00E-04

0.9775
-1.59E-07 -2.58E-06

245 3.33 0.8
3.74E-06 1.00E-04

0.9728
-1.52E-07 -2.36E-06

in brackets: standard error

Table 3: Estimated parameter values are shown for pectin at different initial concentrations, pore sizes, transmembrane pressures and cross-flow velocities for Equation 9. 

1 2
1

⋅
 

= +  
 

p
b

J K K
C
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K2; in this case, the tendency to form gel prevents the macro-solutes 
of pectin deposited from being easily removed from the membrane 
surface, which adds a considerable resistance to the flow. On the other 
hand, cellulose had intermediate values of K1 and K2 (Table 2). 

The molecular weight of the cellulose and the shear stress 
exerted by the cross-flow velocity caused a dynamic balance between 
convective flow and diffusive flow and reducing the formation of the 
polarized layer, which increases the mass transfer and the permeate 
flows and decreases the subsequent membrane cleaning process [40]. 
The highest values of K1 reported by lignin may be due to the ease of 
foaming in the presence of water and the turbulent flow developed in 
the retentate stream by action of the CFV (Table 1). The solubility of 
lignin in water can cause it to agglutinate near the membrane surface, 
thereby decreasing the velocity with which macro-solutes are removed 
from the surface (low values of K2), nevertheless, the turbulent flow 
easily removes the macro-solutes accumulated on the membrane 
surface [41-43]. Banerjee and De [44] found that the turbulent flow 
near the membranes drags the particles that accumulate on the gel layer 
so that the thickness of the gel layer decreases with increasing Reynolds 
number. Furthermore Verma and Sarkar [45] found that turbulent 
flow increases the mass transfer coefficient.

Influence of the hydrodynamic conditions and membrane pore 
size on K1 and K2 parameters: Depending on the macro-compound 
used, the CFV, TMP and pore size can positively or negatively influence 
the values of K1 and K2. For example, when the CFM is performed 
with the pectin fluid model at a pore size of 0.5 µm, a higher value 
of K1 is obtained (4.8 × 10-6 m·s-1), whereas increasing CFV decreases 
K1 (Figures 3-6). It is known that membranes with higher pore size 
tend to be more susceptible to particles deposition and to fouling and, 
consequently, display higher permeate flux decline [46].

Additionally, an increase of CFV, TMP and pore size produces 
higher values of K2. The negative effect of CFV on K1 and the positive 
effect of TMP on K2 indicates that mass transfer is limited by TMP 
during the CFM of the pectin fluid model, given the tendency to form 
gel and deposited on the membrane surface increasing the thickness of 
gel layer and the permeate flow resistance, while the intermediate pore 
blocking and complete pore blocking contributed to the overall fouling 
mechanism [47,48].

Therefore, the action of the CFV is not sufficient to remove 
the macro-solutes accumulated on the fouling layer, while the gel 
layer is compacted by the action of pressure, and the interactions 
between macro-solutes/membrane pore size could participate in the 
consolidation of the cake structure. In this case, the convective flow is 
larger than the diffusive flow of solutes, and the permeate flow tends to 
be minimal [39].

For cellulose, (K1) is controlled by the pore size and the CFV, 
despite the small shear stress exerted by the CFV, whereas (K2) is 
controlled by the pore size and TMP (Figure 4).

For lignin, the velocity at which the permeate flows through the 
fouling layer and the membrane is limited by the pore size and the TMP 
and is favoured by increasing CFV; therefore, the velocity with which 
macro-solutes are removed increases with increasing TMP (Table 1). 

Conclusion
Each feed/membrane system illustrates a special case of the 

phenomenon of fouling, although when cellulose is present in model 
solutions, the permeate flux is enhanced. The experimentally obtained 
data showed that pectin is the main macro-compound responsible for 
the loss of efficiency of tangential microfiltration. Therefore, to reduce 
potential fouling, enzymatic hydrolysis should be implemented as a 

Figure 3: Contour graph K1 for pectin. Interactions among significant 
variables (velocity, pore size).

Figure 4: Contour graph K1 for cellulose. Interactions among variables (pressure, velocity, pore 
size).Figure 4: Contour graph K1 for cellulose. Interactions among variables 
(pressure, velocity, pore size).

Figure 5:  Contour graph K1 for lignin. Interactions among variables (pressure, velocity, pore 
size).
Figure 5: Contour graph K1 for lignin. Interactions among variables (pressure, 
velocity, pore size).
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pretreatment for the CFM process or small amounts of cellulose fibre 
should be added to reduce the fouling because cellulose fibre does not 
react with the food.

The optimum operating conditions and pore size to reduce fouling 
of the membranes depend on the pore size to particle size ratio and the 
physicochemical interactions between the solute and membrane.

The mathematical model (Equation 9) is useful in the region where 
the permeate flow is nearly independent of pressure, the pore size and 
cross-flow velocity but is dependent on the diffusional phenomenon of 
mass transfer. In this case, the values ​​of the parameters K1 and K2 are 
dependent on the type of feed used.
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