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Abstract

Deep brain stimulation (DBS) is an effective treatment option for patients with Parkinson’s disease (PD), essential
tremor and certain types of dystonia. DBS surgery is typically offered to patients that have diminishing benefits from
dopamine replacement therapy with prominent motor fluctuations. Recent research has also shown that DBS can
have a significant impact on non-motor symptoms (NMSs), including influencing autonomic and related symptoms.
In this editorial, we will evaluate these publications and discuss the often positive impact of DBS on autonomic
symptoms, weight changes, sleep disturbances and sensory function.
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Abbreviations:
DBS: Deep Brain Stimulation; STN: Subthalamic Nucleus; GPi:

Globus Pallidus Interna; PD: Parkinson’s Disease; NMSs: Non-motor
Symptoms; Vim: Ventral Intermediate Thalamic Nucleus; PLM:
Periodic Leg Movements; RLS: Restless Legs Syndrome; REM: Rapid-
Eye Movement Sleep; DT: Detection Threshold; IT: Identification
Threshold; DRT: Dopaminergic Replacement Therapy

Introduction
During the past 20 years, DBS has become an important therapeutic

option for PD patients, especially for those with motor complications
of dopaminergic treatment, such as motor fluctuations and
dyskinesias. It has been shown that DBS treatment significantly
improves tremor, rigidity, and bradykinesia. As a result, oral
medication needs are usually reduced following STN DBS surgery
[1,2]. Aside from motor symptoms, majority of patients with PD
experience significant NMSs. The influence of NMSs on quality of life
can be as prominent as motor dysfunction and complications of
medications, especially for those patients with advanced stages of PD
[3]. Recently, Klingelhoefer and colleagues reviewed the impact of
deep brain stimulation on NMSs in PD, focusing on neuropsychiatric
symptoms [1]. They concluded that STN and GPi DBS is a safe
procedure with respect to cognitive morbidity over short- and long
term follow-up in carefully selected patients.

Dysfunction of the autonomic nervous system is common in PD,
and it increase with progression of disease, causing a major impact on
quality of life [4]. Not only central system is thought to be due to
autonomic dysfunction [5,6] but also peripheral sympathetic

denervation are demonstrated involving it [7,8]. As basal ganglia is
connected to areas involving in regulation of the autonomic nervous
system [9] STN-DBS may affect autonomic nervous system functions.
Some studies have indicated that some autonomic symptoms may
improve following STN DBS. In this review, a focused literature search
was performed to review the effects of DBS treatment on
dysautonomia, sensation, sleep, and weight.

Thermoregulation and Sweating Disturbances
Thermoregulation is impaired in patients with PD and sweating

abnormalities can be troublesome [10]. Abnormal sensations of heat
or cold, impaired sweating responses, and hypothermia can all occur
[10]. Severe drenching sweats occur commonly as an end-of-dose “off”
phenomenon in patients with advanced disease, which may be
satisfactorily controlled with adequate dopamine replacement therapy
[11].

STN-DBS seems to improve disturbances in temperature sensations
in patients with PD [12]. Cold and warm sense thresholds of patients
were lower during the DBS-on mode when compared with the DBS-
off mode [12]. Drenching sweats and akathisia showed a remarkably
good response to chronic STN stimulation [13]. Imaging studies with
reconstruction indicated that stimulation of, or spread of stimulation
from, the caudal medial aspect of the STN and/or the caudal aspect of
the ventral thalamus/zona incerta may be responsible for alleviating
drenching sweats [14].

Urinary Symptoms
Urinary symptoms are among the most frequent non-motor

symptoms in patients with PD. They occur in 38–71% of patients with
PD, typically manifesting as nocturia, urgency, and frequency. The
mechanisms of these symptoms may be earlier perception of bladder
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sensation resulting in detrusor overactivity [15]. STN DBS has been
shown to have variable results on urinary symptoms. Some studies
suggest improvement in urinary symptomatology after STN DBS
[16-18] with improvements in detrusor hyperreflexia [17] and
increased bladder capacity [18]. A study on regional cerebral blood
flow measured by PET showed that STN-DBS can modulate neural
activity in the thalamus and insular cortex by periaqueductal grey
activity, an effect that results in enhancement of afferent urinary
bladder information processing [16]. Fritsche and colleagues reported
two patients that developed acute urinary retention following DBS
[19]. The phenomenon may be due to suboptimal positioning of the
electrodes [19].

Orthostatic Hypotension
Orthostatic hypotension is a common problem in patients with

advanced PD. Levodopa and most anti-parkinsonian medications may
exacerbate orthostatic hypotension [20,21]. STN-DBS may improve
orthostatic hypotenion by increasing heart rate, improving
baroreceptor sensitivity, and increasing peripheral vasoconstriction
[22,23]. Targeted electric DBS in STN can enhance sympathetic
regulation; the autonomic response may be due to electrical signals
being distributed to limbic components of the STN or descending
sympathetic pathways in the zona incerta [24]. GPi stimulation
showed no change in cardiovascular parameters [25,26].

Gastrointestinal Symptoms
Gastrointestinal dysfunction such as dysphagia, reflux and

constipation is common in patients with advanced PD. In fact,
aspiration pneumonia secondary to dysphagia is a leading cause of
death in PD [27]. The gastrointestinal dysfunction likely results from
degeneration of extranigral lesions related to neural control of
gastrointestinal tract function, such as cells in the dorsal vagal nucleus
and the intramural intestinal plexus [28]. The ideal strategy for the
management of gastrointestinal dysfunction remains uncertain.

Bilateral STN-DBS can improve gastric emptying [29], salivation
swallowing, and constipation [30]. Lengerer and colleagues reported
DBS has no clinically significant effect on deglutition [31], but a study
using video fluoroscopy found improvements in some aspects of
pharyngeal swallowing following STN-DBS [32]. It is possible that
STN-DBS modulates thalamocortical or brainstem targets to overcome
the bradykinesia and hypokinesia associated with pharyngeal muscles,
improving the pharyngeal stage. Stimulation of certain areas of basal
ganglia and/or the entire basal ganglia circuits may contribute to
selecting appropriate swallow motor plans based on propioceptive
feedback, and adapting these plans in the context of environment
(what is being swallowed) [32]. Recently, Troche MS and colleagues
reviewed 9 studies specifically addressing the effects of DBS on
swallowing, concluding that none of these studies demonstrated
clinically significant effects of DBS on swallowing function. There is
no data to suggest that STN or GPi have differential effects on
swallowing function [33].

Sexual Dysfunction
In general, studies on sexual dysfunction in PD patients have been

relatively sparse. Dopamine agonists and levodopa can increase sexual
wellbeing [34] Age, severity of disease, and depression seem to be the
most important predictors of sexual wellbeing in PD [35]. Castelli and
colleagues conducted questionnaires in 31 patients with PD

investigating the impact of DBS on sexual function. They found a
small but significant improvement in sexual functioning in male
patients with PD 1-year after bilaterally DBS surgery, particularly in
those less than 60 years of age. No difference in sexual satisfaction was
found in the women. They also found that changes in sexual
satisfaction after surgery had no correlation with improvement in
depression, anxiety, or motor function [36]. These sexual disturbances
may be due to the change in activity of medial preoptic anterior
hypothalamic nuclei and DBS stimulation of projections to the nucleus
accumbens, both responsible for sexual functions [37].

Sleep Disturbance
Sleep disturbances in patients with PD are multifactorial. While

degeneration of dopaminergic and nondopaminergic neurons in the
brainstem cause specific sleep disorders, parkinsonian motor
dysfunction, dyskinesias, pain, nocturia, and dopaminergic and
nondopaminergic medications may all contribute to sleep
disturbances [10]. Recent studies have suggested that STN-DBS
improves subjective and objective measures of sleep in patients with
PD. Bilateral STN-DBS decreased awake state after sleep onset,
improved nocturnal mobility, RLS, nocturia, and increased continuous
sleep time and sleep efficiency [38-42]. Polysomnography showed that
STN stimulation increased the durations of deep slow wave sleep and
REM sleep, but the proportion of time spent in each sleep stage was
not significantly different. When stimulation was absent, sleep
disturbances were similar to those observed before surgery [43]. These
polysomnographic changes suggest a direct effect of STN stimulation
on the sleep regulatory center. However, in most studies, excessive
daytime somnolence, periodic limb movements of sleep, and REM
sleep behavior, did not improve after bilateral STN-DBS [40,44]. As
proposed by Iranzo and colleagues [45], the persistence of REM
behavior disorder after surgery suggests that electrical inactivation of
the STN does not restore the pedunculopontine activity which
promotes muscle atonia during REM sleep [46], whereas the
persistence or increase of PLM might reflect the reduction of post-
operative dopaminergic treatment [45]. Kedia and colleague reported
new problematic symptoms of RLS could be reversed by dopaminergic
drugs [47].

Gpi-DBS has been reported to improve sleep quality [48] as well as
subjective daytime sleepiness in individuals who did not have their
anti-Parkinsonian medications reduced. It is not known if
dopaminergic medicines or GPi-DBS itself is involved in the positive
effects on sleep [49]. Stimulation of Vim did not modify sleep quality
or architecture [50].

Weight Loss
Weight loss in patients with PD is associated with a loss of fat mass

years before a formal diagnosis is made [51]. A variety of factors have
been implicated in weight loss, including increased metabolic demand
from motor symptoms, decreased caloric intake from motor disability,
a side effect of medication [52], and secondary dysfunction of central
energy homeostasis.

Postoperative gain in body weight following bilateral STN-DBS was
found in two studies [53,54]. Bodyweight increases most rapidly
within the first 3 months after surgery, and weight gain slowly
increases in the long term [54]. The quick initial weight gain might be
explained by the transient euphoria in the immediate postoperative
phase, which is often associated with increased appetite [55], and the
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reduction of energy expenditure (reduced dyskinesia, rigidity, and
tremor). Postoperative eating behavior disorders (so-called emotional
eating and snacking) are frequently noted in apathetic patients, which
is also described in patients with depression [56]. Weight variation in
PD before and after DBS-STN is influenced by noradrenergic
interaction between the locus coeruleus, the STN, and the
hypothalamic nucleus. The locus coeruleus plays an important role in
regulating energy metabolism through its noradrenergic connections
with the hypothalamus. Noradrenergic degeneration is an important
hallmark in PD because of neuronal loss in the locus coeruleus [57].

In a comparative study, weight gain was more frequent and more
severe in patients who underwent subthalamic surgery than in patients
who had pallidal surgery. There were no significant changes in food
intake, either qualitatively or quantitatively, in the two groups [58]. It
was concluded that an additional effect of DBS-STN on the
homeostatic control centers may have contributed to the difference in
weight gain between the two targets. Vim stimulation seems not to
result in weight gain in patients with essential tremor, but there is
inadequate evidence that this may occur in PD [59].

Pain
Approximately 70% to 80% of patients with PD suffer from chronic

pain syndromes over the course of their disease [60]. Pain severely
impairs quality of life, and in the setting of PD different types of
painful symptoms may arise. Since pain mechanisms are not clearly
understood, the current therapeutic strategy is mainly symptomatic.

Levodopa has been shown to improve sensory symptoms by
increasing pain threshold [61]. Similarly, clinical studies have
demonstrated that STN-DBS may reduce pain intensity and lengthen
pain-free intervals [62,63]. In patients with PD, dystonic pain and
central pain significantly improve following STN-DBS surgery, with
more modest improvements in radicular/neurotic and musculoskeletal
pain [62]. Pain due to camptocormia only shows mild improvement
with STN or GPi stimulation [64]. Post-DBS follow-up evaluations
showed the mean pain score at to be lower than that at baseline and
development of new pain occurred at a similar rate as that of the
general aging population [65]. This is particularly significant since
central pain generally worsens with progression of PD [66].

The mechanisms by which STN-DBS improves pain in PD remain
unclear. Since musculoskeletal pain and dystonic pain are typically
related to increased muscle tone or rigidity, it is possible that STN-
DBS provides pain relief by alleviation of rigidity. It is also possible
that improvements in depressive symptoms after DBS contribute to
improved pain control. One potential mechanism for pain relief
following STN-DBS may be the modulation of the lateral
discriminative pain system, which is impaired in PD patients with
neuropathic pain [67]. Stimulation of the posteroventral lateral GPi
has also been suggested to improve pain and dysaesthesia in advanced
PD up to 74%; the improvement in such symptoms was sustained at
the one year follow up [68]. The result is similar to reports of
pallidotomy, suggesting that the basal ganglia play a critical role in
modulating pain [69].

Dysosmia
Olfactory dysfunction is an early symptom in PD, often presenting

before the motor symptoms [70]. DRT does not improve olfactory
function [71]. Patients treated with bilateral STN-DBS showed no
significant alterations in odor DT scores in the stimulator-on and off

conditions, whereas odor IT scores were significantly improved in the
stimulation-on relative to the stimulation off condition[72,73], which
may indicate that DBS has a positive effect on the cognitive processing
of olfactory information in patients with PD.

It remains unclear why the odor IT improved but the odor DT did
not after DBS treatment. It is possible that odor DT is a low-level
marker of olfactory function and is related to the degree of
pathological impairment of the olfactory bulb and anterior olfactory
nucleus. [74] Because these structures are damaged in early stages of
PD [75], stimulation may not be able to improve the function of these
areas. In contrast, olfactory identification is not only related to higher-
order olfactory center operations but also to higher-level cognitive
functioning [74]. These cortical regions relevant to olfactory
identification are only damaged in advanced PD. A previous study
demonstrated that when PD patients lose all olfactory functioning, and
olfactory DT increases maximally, DBS no longer improves olfactory
dysfunction [73]. Fibers involved in the production, integration, and
transmission of olfactory information are located in numerous cortical
and subcortical regions sharing vast connections with the STN [73],
and striatal dopamine metabolism is related to olfactory identification
[76,77], which indicates that STN-DBS may regulate abnormal
excitability to improve olfactory identification [78]. The prefrontal
lobe and cingulate gyrus are closely related to mood and are easily
influenced by odor [79]. Since DBS may improve somatic and
psychiatric symptoms, it may also increase the olfactory sensitivity of
PD patients.

No data are available on dysosmia in PD patients following GPi-
and Vim-DBS.

Conclusions
Most of the current literature on the effects of DBS on autonomic

nervous system dysfunction is based on using STN as the target, with
limited data on GPi and almost no evidence from Vim for PD. We
summarized the impact of these three commonly used DBS targets on
NMSs of PD patients in Table 1. It shows that STN-DBS may be a safe
procedure with regard to pre-existing dysautonomia. In fact, STN-
DBS may even have beneficial effects on non-motor symptoms such as
pain, sleep, weight, gastrointestinal disturbance, sweating, orthostatic
hypotension, anosmia, bladder overactivity, and sexual dysfunction. In
conclusion, improvements in these non-motor symptoms may
significantly improve quality of life of PD patients beyond
improvements resulting from motor benefits alone. GPi DBS may
produce similar results, but further clinical research is needed. As the
motor effects of STN-DBS and GPi DBS are similar [48], it is possible
that NMSs may determine the target of choice in the future.

 STN GPi Vim

Verbal fluency Declined Possibly declined Unknown

Pain Improved Improved Adverse events

Dysosmia Improved Unknown Unknown

Sleep disturbance Some aspects
Improved, some
aspects
unchanged

Improved Unchanged

Weight loss Gain Gain less Possible none
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Dysphagia Uncertain, possibly
improved

Uncertain Unknown

Cardiovascular
disturbance

Improved Unchanged Unknown

Urinary symptoms Improved Unknown Unknown

Thermoregulation Improved Unknown Unknown

Drenching sweats Improved Unknown Unknown

Sexual
dysfunction

Man improved Unknown  

Table 1: Synopsis of the impact of the most commonly used DBS
targets on NMSs in PD patients
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