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Abstract
Unresolved inflammation is associated with several widely recurrent aging-associated diseases such as arthritis, 

periodontitis, metabolic disorders, atherosclerosis, and neurodegeneration. Endogenous mechanisms that curtail 
excessive inflammation and prompt its timely resolution are of considerable interest. In recent years, previously 
unrecognized chemical mediators derived from polyunsaturated fatty acids were identified as endogenous specialized 
pro-resolving lipid mediators (SPM) that control both the magnitude and duration of acute inflammation and activate 
resolution. Lipoxins (LX), resolvins (Rv), protectins (PD), and maresins (Mar) are possess distinct chemical structures, 
bind to specific G-protein coupled receptors (GPCRs) in a stereospecific manner, and regulate biological pathways 
to promote resolution in several pre-clinical experimental settings of age-related inflammatory diseases. This review 
highlights the biosynthesis of SPM and cellular mechanisms that underscore their beneficial bioactions in the regulation 
of acute inflammation in age-related diseases.

The elucidation of these mechanisms operating in vivo to keep acute inflammation under physiologic boundaries 
and stimulate resolution opened many new opportunities in resolution pharmacology to target aging-associated chronic 
inflammatory pathologies.
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eicosatetraenoic acid); ALX/FPR2: Lipoxin A4 Receptor/Formyl 
peptide Receptor 2; COX: Cyclooxygenase; DHA: Docosahexaenoic 
Acid (4Z, 7Z, 10Z, 13Z, 16Z, 19Z - docosahexaenoic acid); EPA: 
Eicosapentaenoic Acid (5Z, 8Z, 11Z, 14Z, 17Z- eicosapentaenoic acid); 
GPR32/DRV1: G-Protein Coupled Receptor 32/Resolvin D1 Receptor 
1; IκB: Nuclear Factor of κ Light Polypeptide Gene Enhancer in B-cells 
inhibitor; IL-Interleukin; LM: Lipid Mediator; LO: Lipoxygenase; LX: 
Lipoxin; Mar: Maresin; (N)PD: (Neuro)Protectin; PG: Prostaglandin; 
PUFA: Polyunsaturated Fatty Acid; Rv: Resolvin; SPM: Specialized 
Pro-Resolving Mediator

Acute Inflammation: A Protective Host Response that 
May Turn into Harm

Acute inflammation is a defensive physiological response 
occurring in vascularized tissues following injuries or infections [1]. At 
histological levels, the “cardinal signs” of inflammation were described 
by the Roman physician Celsus (1st century BC) and are rubor 
(redness), tumor (swelling), calor (heat), and dolor (pain). These are 
the macroscopic events tightly regulated at molecular and cellular level 
in tissues. Edema is one of the earliest event in acute inflammation, 
arising from increased vascular permeability of the microcirculation 
(Figure 1). Next, leukocytes, mainly polymorphonuclear neutrophils 
(PMN), are recruited at sites of inflammation, transmigrate blood 
vessels linings, and accumulate in the inflamed site to eradicate the 
cause of inflammation (Figure 1). In experimental acute inflammation 
monocytes enter the inflammatory site and differentiate into 
macrophages (MФs). These latter are pivots in initiating the resolution 
and the return to homeostasis, i.e. the subsidence of the inflammation 
and restoration to the previous normal condition, mainly by clearing 
microbes, cellular debris, and apoptotic cells through non phlogistic 
phagocytosis (termed efferocytosis) [2-4] and by promoting tissue 
repair (Figure 1). In order to maintain the host in a healthy status, 
both the initiation of acute inflammation and its resolution must 
be efficient. Indeed, impaired acute inflammation will not provide 

defense against pathogens early post infection [5], while non-resolving 
inflammation can cause further damage to the host and lead to loss 
of function, a common feature of many human pathologies including 
arthritis, asthma, cancers, and cardiovascular diseases [6-8]. Therefore, 
it is not how often or how extensive an acute inflammatory reaction 
starts, but how effective and quickly it resolves that determines whether 
inflammation is detrimental or favorable to the host. Given the high 
occurrence of inflammation-related diseases in aging, understanding 
how acute inflammation resolves is of extreme interest.

Microbial infections or tissue damage precipitate an acute 
inflammatory response in peripheral vascularized tissues, 
characterized by edema, exudate formation, and leukocyte infiltration. 
Polymorphonuclear leukocytes (PMN) are among the first leukocytes 
that infiltrate and fight the pathogenic noxa through engulfment and 
phagocytosis. Their apoptosis followed by removal initiate tissue 
resolution. Monocytes that enter the inflamed site as second wave 
and differentiate into pro-resolving macrophages (MФs) are master 
cells in resolution. Activated leukocytes release MPs that can promote 
resolution. Ancient physicians defined resolving exudates pus bonum 
et laudabile (“good and laudable pus”) as soon as they recognized that it 
anticipated the resolution of infections and healing of wounds. Today, 
we appreciate that exudates, in addition to deliver leukocytes in inflamed 
tissues, also carries bio-precursors for lipoxins, E-series Resolvins, 
D-series Resolvins, Protectins (neuroprotectin D1), and Maresins,
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collectively known as Specialized Pro-resolving lipid Mediators (SPM). 
SPM work to keep the inflammatory response within physiological 
boundaries and accelerate the return to homeostasis, providing novel 
opportunities of therapeutics and treatment of human diseases. For 
more details on the historical steps that changed our understanding 
and concepts on the process of resolution of acute inflammation.

Resolution of Inflammation: An Active Process 
Regulated by Specific Chemical Mediators

Resolution has been well described by pathologists more than 100 
years ago as the time when the number of neutrophils infiltrating the 
inflamed tissue is decreasing [1]. This process has been traditionally 
considered passive, simply due to the attenuation/dissipation of pro-
inflammatory signals. Pioneer work from dr. Serhan et al. [9-12] 
and from many others worldwide [4,13-16] have demonstrated that 
resolution of inflammation is instead an active process orchestrated 
by specific chemical mediators that turn on biochemical pathways 
and MФ functions to enable the return to homeostasis. Among them, 
endogenous lipid mediators (LM) biosynthesized from essential 
Polyunsaturated Fatty Acids (PUFA) play essential roles in resolution 
acting as “resolution agonists” to a) keep inflammation under 
physiological boundaries preventing excessive PMN infiltration and b) 
expedite the complete return to homeostasis stimulating efferocytosis 
of MФ (Figure 1). Therefore, they represent a new genus of specialized 
pro-resolving lipid mediators (SPM) [17,18] or immunoresolvents 
since they act by finely regulating immune processes to promote 
resolution and the return to homeostasis [19-21]. The SPM genus 
include lipoxins (LX), resolvins (Rv), protectins (PD), and maresins 
(Mar) that are enzymatically biosynthesized by lipoxygenase (LO)-
driven pathways from Arachidonic Acid (AA), Eicosapentaenoic Acid 
(EPA), or Docosahexaenoic Acid (DHA) that rapidly appear in exudates 
and are made available for the conversion into immunoresolvent [22] 
(Figure 2). In human system, both resident and blood cells contribute 
to the biosynthesis of SPM, which can be detected intact, at pico- to 
nanogram levels, in biological fluids [23,24] as well as in tissues in 
basal conditions and in response to stimuli such as physical exercise 

[25,26], inflammation [27], or vascular damage [28]. In addition to 
the LO-pathway, a distinct biochemical route for the biosynthesis 
of SPM is operative in the vasculature of inflammatory loci. This is 
initiated by aspirin, a derivative of salicilates, upon acetylation of 
cyclooxygenase- (COX) 2. The covalent modification of COX-2 shifts 
the enzyme activity from endoperoxydase into a LO–like, initiating the 
biosynthesis of epimeric forms of SPM, such as 15R-epi- LXA4 coined 
“Aspirin Triggered Lipoxin” (ATL) [29]. Notably, ATL, produced in 
vivo in human subjects taking aspirin [30], proved to be responsible for 
the local anti-inflammatory actions of low-dose aspirin [30]. Hence, 
in addition to block formation, aspirin impinges on resolution by 
triggering the biosynthesis SPM (Figure 2) [31].

In order to define resolution in unbiased, quantitative terms, 
mathematical resolution indices were introduced by Bannenberg et 
al. determining the cellular changes in exudates following an acute 
inflammatory stimulus (namely zymosan A particles from S. cerevisiae, 
a Toll-like receptor activator). Resolution indices encompass: Tmax, 
i.e., time point of maximum PMN infiltration (Ψmax); T50, time 
necessary to achieve 50% reduction in PMN number (Ψ50) from Ψmax; 
resolution interval (Ri = T50 -Tmax); time interval between Tmax and T50 
[32]. The introduction of resolution indices permits the evaluation 
of pro-resolution bioactions of endogenous chemical mediators 
or pharmacological agents in pre-clinical models of inflammatory 
diseases [33-35].

Other chemical mediators are involved in endogenous resolution 
pathways to switch off leukocyte infiltration and restore homeostasis. 
Among them are proteins such as the glucocorticoid-induced annexin 
(Anx) A1 and galectins, which tune the inflammatory response and bring 
about homeostasis (for recent reviews see refs [36,37]. Furthermore, 
recent results demonstrate that small inhibitors of cyclin-dependent 
kinases [3,38] and histone deacetylases [39] can promote resolution 
by inducing PMN apoptosis and stimulating their prompt removal 
by MФs, indicating that resolution can be pharmacologically targeted. 
The appreciation of resolution as a programmed process governed 
by specific chemical mediators offers opportunities in the uncharted 
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Figure 1: Multistep processes in acute inflammation and resolution. Microbial infections or tissue damage precipitate an acute inflammatory response in 
peripheral vascularized tissues, characterized by edema, exudate formation, and leukocyte infiltration. Polymorphonuclear leukocytes (PMN) are among the first 
leukocytes that infiltrate and fight the pathogenic noxa through engulfment and phagocytosis. Their apoptosis followed by removal initiate tissue resolution. Monocytes 
that enter the inflamed site as second wave and differentiate into pro-resolving macrophages (MФs) are master cells in resolution. Activated leukocytes release MPs 
that can promote resolution. Ancient physicians defined resolving exudates pus bonum et laudabile (“good and laudable pus”) as soon as they recognized that it 
anticipated the resolution of infections and healing of wounds. Today, we appreciate that exudates, in addition to deliver leukocytes in inflamed tissues, also carries 
bio-precursors for lipoxins, E-series Resolvins, D-series Resolvins, Protectins (neuroprotectin D1), and Maresins, collectively known as specialized pro-resolving 
lipid mediators (SPM). SPM work to keep the inflammatory response within physiological boundaries and accelerate the return to homeostasis, providing novel 
opportunities of therapeutics and treatment of human diseases. For more details on the historical steps that changed our understanding and concepts on the process 
of resolution of acute inflammation.
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terrain of resolution pharmacology, namely harnessing endogenous 
controllers of inflammation as therapeutics or biotemplates for new 
drugs to treat inflammation-related diseases [18,40]. For example, 
AnxA1 served as model for the generation of peptides [41,42] and 
engineered nanoparticles [43] that dampen inflammation and protect 
from tissue damage. Likewise, several LX stable analogs obtained 
by organic synthesis proved to have anti-inflammatory and organ 
protective activities [44-46] and results by Norling et al. demonstrate 
the efficacy of human neutrophil-derived nanoparticles carrying 
a benzo-LX analog in reducing peritoneal and joint inflammation 
[47]. Moreover, RX-10045, a synthetic resolvin analog formulated 
by Resolvyx Pharmaceuticals for Inc. for topical application, proved 
safe and effective in reducing the severity of dry eye syndrome in a 
phase II placebo controlled clinical trial (see http://clinicaltrials.gov. 
Entry Identifier: NCT00799552) and have moved forward to phase 
III clinical trial with Celtic Therapeutics. Finally, a recent placebo-
controlled, randomized, comparative study demonstrated that a LX 
analog significantly ameliorates clinical parameters of juvenile eczema 
[48], further translating results from pre-clinical models to humans 
and establishing the effectiveness of SPM-based pro-resolution 
pharmacology.

Importantly, resolution is not synonymous of anti-inflammation. 

This is because, in order to be considered a “pro-resolver” a chemical 
entity, in addition to serve as “stop signals” for leukocyte trafficking 
and other cardinal signs of inflammation (e.g. swelling, pain), must 
stimulate efferocytosis by MФ, favor the antibacterial activities, and 
promote tissue repair. Along these lines, while COX and LO inhibitors 
reduce some of the cellular events of the inflammatory reaction (e.g. 
edema formation, PMN recruitment, and pain), they dramatically 
impairs resolution [33,49]. In contrast, aspirin and glucocorticoids act 
synergistically with endogenous pro-resolution pathways [13].

Complete resolution also requires the clearance of microparticles 
(MPs) shed by activated or apoptotic cells in inflammatory loci from 
plasma membranes. MPs are now recognized as “specialized shuttles” 
of bioactive molecules with important roles in inflammation and 
resolution. Indeed, a subset of PMN-derived MPs that exert anti-
inflammatory actions was identified [42,46]. Furthermore, Norling et 
al. developed, from human PMN, novel nano-proresolving medicines 
(NPRMs) containing SPM that proved bioactive in reducing acute 
inflammation in vivo, expediting resolution, and promoting wound 
healing [50]. Additional biological properties of NPRMs have recently 
been demonstrated in a modified focal microfluidic chamber [51] 
on isolated human leukocytes, further confirming the possibility to 
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Figure 2: Biosynthesis of endogenous SPM in resolving exudates. Biosynthetic pathways of LXA4, 15-epi-LXA4 (A), E-series resolvins (B), D-series resolvins, 
Maresins, and (neuro)protectins. The complete stereochemistry of each SPM are established, total organic synthesis achieved, and bioactions confirmed. See text 
and references within for additional details.
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exploit NPRMs for delivering endogenous pro-resolution mediators 
therapeutically.

Biosynthesis of SPM from PUFA

The identification SPM was achieved using a self-limited or 
naturally resolving acute inflammation model in vivo  and a systems 
approach [11,52] and reviewed [17]. For this, the murine dorsal 
air pouch was ideal because it permitted isolation of inflammatory 
exudates for cellular analyses, proteomics, [11,52] and direct LM-
lipidomics of bioactive products, as well as their inactive precursors 
and further metabolites, during a self-limited acute inflammation, i.e., 
the natural means by which inflammation returns to homeostasis. With 
this systems approach it was possible to establish the local and temporal 
dissociation of LM biosynthesis [32] from onset to resolution phase 
of inflammation. Indeed, in this setting, the eicosanoid biosynthesis 
underwent a “class switch” with the deactivation of the biosynthesis 
of pro-inflammatory leukotrienes (LT) and the initiation of LX and 
Rv production [12]. LM lipidomics using liquid chromatography-
tandem mass spectrometry (LC-MS/MS) coupled with informatics 
permit profiling of closely related compounds and identification of 
new molecules. Retrograde, both biogenic and total organic, synthesis 
allows the complete elucidation of chemical structure, stereochemistry, 
and physical properties, along with the recapitulation of the in vivo 
biosynthetic pathway [19,53,54]. The matching/identification of LM 
is usually carried out with at least two different instruments and/
or solvent systems and the criteria to identify a known LM are the 
following: a) LC retention time should match by coelution with the LM 
authentic standard; b) UV chromophore should match the synthetic 
and authentic LM (i.e., λmax and band shape); as well as c) > 6 diagnostic 
ions of tandem MS/MS spectrum. Recently, a new set of SPM derived 
from DHA has been identified with targeted LM metabolomics [21], 
providing new mechanisms for the beneficial actions of PUFAs. 
The next paragraph will illustrate biosynthetic routes and chemical 
properties of the main SPM.

Lipoxins

LXs are “lipoxygenase interaction products” derived from the 
enzymatic conversion of arachidonic acid (AA) via trancellular 
biosynthesis during cell-cell interactions occurring during inflammation 
[55]. LXA4 and B4 were the first SPM identified by Serhan et al. [9,10]. 
Although LXs were identified in 1980s in the Samuelsson laboratory 
[9], their potent bioactions were uncovered some years later when it 
became clear that they act as “stop signals” of further PMN infiltration 
[56] and as potent stimuli for the non-phlogistic recruitment of 
monocytes [57] and MФ efferocytosis [58] (recently reviewed in [40]). 
In humans, sequential oxygenation of AA by 15-LO and 5-LO, followed 
by enzymatic hydrolysis, leads to the biosynthesis of LXA4 and B4 in 
mucosal tissues, such as airways, gastrointestinal tract, and oral cavity 
[27,59,60] (Figure 2) [61-63]. Blood vessels represent a second site for 
LX biosynthesis, with the conversion of 5-LO-derived LTA4 into LXA4 
and B4 by 12-LO in platelets [64,65].

ATL: The first aspirin triggered SPM

The ATL synthetic pathway is initiated by aspirin by acetylation 
of COX-2 which renders the enzyme capable of converting AA into 
15R-HETE, the substrate of leukocyte 5-LO for the biosynthesis 
of positional isomers of LXA4, named 15R-epi- LXA4 [29]. This 
observation proved, for the first time, that aspirin has aspirin has 
the unique capability, among non-steroidal anti-inflammatory drugs 
(NSAID), to “jump start” resolution by its ability to trigger endogenous 
biosynthesis of so called “aspirin triggered” LX (ATL) (Figure 2). In 

keeping with this, ATL is produced in vivo in humans taking aspirin 
[30] and mediates the local anti-inflammatory actions of low-
dose aspirin in healthy individuals [31]. Interestingly, studies from 
Birnbaum et al. demonstrate that atorvastatin, a widely used lipid-
lowering drug, promotes the myocardial generation of 15R -LXA4 via 
S-nitrosylation of COX-2 [63]. Furthermore, Gutierrez et al. recently 
showed that pioglitazone, an insulin-sensitizing agent, elevates plasma 
levels of 15-epi-LXA4 [64], providing further mechanisms for the 
beneficial actions of this drug [65].

E-series resolvins

The essential roles of omega-3 PUFA EPA in health were already 
evident in 1929 [66] and ω-3 proved beneficial effects in human 
diseases including potential antithrombotic, immunoregulatory, and 
antiinflammatory properties [67,68]. Also, the Gruppo Italiano per lo 
Studio della Sopravvivenza nell’Infarto Miocardico-Prevenzione trial 
reported a significant∼ decrease in cardiovascular death in >11,000 
patients surviving myocardial infarction taking 1 g of ω-3 PUFA daily 
along with recommended preventive treatments including aspirin 
[69]. However, the mechanisms offered for explaining their beneficial 
actions (e.g., preventing conversion of AA to pro-inflammatory and 
prothrombotic eicosanoids; serving as an alternate substrate for 
the 5-series LTs that are less potent than 4-series LTs; conversion 
by COX to 3-series prostanoids that also maintain antithrombotic 
actions) [67,68,70] have not been generally accepted due to the lack of 
molecular evidence in vivo  and the high concentrations of ω-3 PUFA 
required in vitro to achieve putative “beneficial actions”. To address 
the molecular basis for anti-inflammatory properties of ω-3 fatty acids, 
an unbiased LC-MS/MS-based informatics approach was developed 
to identify novel mediators generated from ω-3 precursors during 
acute inflammation in vivo. Using this approach, EPA was found to be 
enzymatically converted into novel potent LMs coined resolvins (an 
acronym of resolution phase interaction products) because a) they are 
produced during cell-cell interactions occurring in the resolution phase 
of acute inflammatory response; (b) “stop” further neutrophil entry to 
sites of inflammation, and (c) reduce exudates [11,32,52,71,72]. EPA-
derived E-series Rv are endogenously biosynthesized in vivo  in resolving 
murine exudates and in isolated human cells by isolated cells (e.g. 
endothelial cells -leukocyte interaction) and in whole blood (vide infra). 
The complete stereochemistry of first member of this family, RvE1, has 
been established as 5S,12R,18R-trihydoxy-6Z,8E,10E,14Z,16E-EPA 
[73]. In vascular endothelial cells, aspirin acetylated COX-2 converts 
EPA into 18R-Hydro(peroxy)-Eicosapentaenoic acid (HEPE), which 
is rapidly taken up by activated leukocytes (e.g., PMN) and further 
metabolized into RvE1 (Figure 2). Interestingly, chiral HPLC analysis 
indicated that the 18R-HEPE isomer was dominant to its epimer 
18S-HEPE in human plasma from healthy volunteers taking EPA, 
whereas human subjects who were administered aspirin before EPA 
had more 18S- than 18R-HEPE. These results indicate that aspirin 
might promote 18S-HEPE production as well as 18R-HEPE from 
ingested EPA [74]. Notably, 18S-HEPE can also be converted to RvE1 
and RvE2 by human recombinant 5-LO and LTA4 hydrolase, a LTB4-
synthesizing enzymes [74], and RvE1 is also produced via cytochrome 
P450-driven oxygenation of EPA [11] and by Candida albicans 
[75]. RvE2 (5S, 18-dihydroxy-EPE) is biosynthesized in resolving 
exudates and in human whole blood via reduction of 5S-hydroperoxy, 
18-hydroxy-EPE, an intermediate in the biosynthetic pathway of RvE1 
[76-78]. Conversely, novel EPA-derived SPM, namely 18R-RvE3 (17R, 
18R-dihydroxy-5Z, 8Z, 11Z, 13E, and 15E-EPE) and epimeric 17R, 
18S-RvE3, that possess potent anti-inflammatory actions both in vitro 
and in vivo are biosynthesized via 12/15-LO by eosinophils [79,80].
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D-series resolvins
Earlier LC-MS/MS-based analyses of resolving exudates from 

mice given DHA and aspirin provided the first evidence for the 
formation of novel endogenous 17-hydroxy-containing mediators 
[53]. Recapitulation of biosynthetic pathways using isolated human 
cells and recombinant enzymes established potential origins of novel 
compounds isolated from resolving exudates in vivo. Indeed, hypoxic 
human endothelial cells COX-2 converted DHA to 13-hydroxy-DHA 
that switched with ASA to 17R-HDHA that can be transformed to 
di- and trihydroxy products by human PMN. These compounds were 
termed “aspirin triggered” D-series resolvins [52]. Remarkably, in the 
absence of aspirin, D-series resolvins carrying the 17S-hydroxy group 
were identified in murine exudates and isolated human cells [52,71]. The 
enzymatic processes leading to the formation of 17S- and 17R-RvD1 
are shown in Figure 2. Following the complete organic synthesis, 
the stereochemistry of 17S-, 17R-RvD1, and RvD2 were established 
as 7S, 8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic 
acid (17S-RvD1), 7S, 8R, 17R-trihydroxy-4Z,9E,11E,13Z,15E,19Z-
docosahexaenoic acid (17R-RvD1) [53], and 7S, 16R, 17S-trihydroxy-
4Z, 8E, 10Z, 12E, 14E, 19Z-docosahexaenoic acid (RvD2) [81]. 
Additional members of this family have identified (RvD3-RvD6). Each 
of these arises by similar biosynthetic routes, but has distinct chemical 
structures and potentially additional bioactions that are now being 
unveiled [20,82].

(Neuro) protectins

In addition to D-series Rvs, DHA also serves as precursor of a 
new family of LM characterized by a conjugated triene system and 
two alcohol groups called protectins (PD), in view of their protective 
actions in neural tissues within the immune system, while the prefix 
neuroprotectin gives the tissue localization and site of action. The 
structure of the founding member of this family, PD1, was first disclosed 
in a report on the isolation and elucidation of resolvins [52,71] and 
its complete stereochemistry later established as 10R,17S-dihydroxy-
docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid [72]. In addition to 
PD1, several stereo- and positional isomers that also possess lower 
bioactivity than PD1 were identified in human and mouse tissues. 
These include 10S, 17S-diHDHA, 4S,17S-diHDHA, 7S,17S-diHDHA, 
and 22-hydrox-10,17S-docosatriene (a putative inactivation product of 
PD1) [53,72]. Finally, a novel aspirin triggered COX-2 driven pathway 
that biosynthesize the 17R-epimeric form of PD1 from DHA has been 
reported [83] (Figure 3). The total organic synthesis and complete 
streochemical assignment of AT-PD1 (10R,17R- dihydroxy-docosa-
4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid) were recently achieved [84].

Maresins

Macrophages have pivotal tasks in restoring homeostasis [2] 
and are main SPM-synthesizing cells during this active process. For 
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RvE1 and PD1 reduces adipokines and liver steatosis
Rvd1 decreases pro-inflammatory cytokines, stimulates M2 macrophages,
and promotes resolution of inflammation in adipose tissue

RvE1 reduces PMN infiltration, 
increases survival and LPS detoxification.
RvD1 decreases disease severity and protects
from tissue damage and weight loss.
RvD2 reduces neutrophilic inflammation
and pro-inflammatory cytokines

LXA4 increases survival post CLP
and reduces bacterial load.
RvD2 decreases PMN and cytokine storm from CLP.
RvD1 and D5 promotes resolution of E.coil infection
lowering antibiotic requirement

LXA4 and STL reduce acute inflammation
and expedite resolution via ALX/FPR2.
RvE1 and PD1 dompen PMN infiltration and
enhance clearance via offerocytosis and exit via lymphatics.
RvD1 reduces inflammation, controls miRNAs and pro-inflammatory genes

RvD1 inhabits platelet aggregation and
leukocyte-endothelial cell interactions.
Reduces size of myocardial infarctions.

RvD1 and PD1 protect from I/R kidney injury

LXA4 and stable analog reduce inflammation
and collagen deposition

RvE1 and PD1 protect against neovascularization
RvD1 reduces PMN and lymphocyte infiltration, decreases
pro-inflammatory cytokines, and improves diseases clinical score

RvE1 and PD1 lower leukocyte infiltration, pro-inflammatory cytokines, and growth factors.
Reduce lesion severity

LX stable analogs decrease
PMN infiltration, bacterial burden,
and disease severity

RvE1 and analogs reduce signs and symptoms
of dry-eye symdrome in humans.
Promoters tear production, corneal epitheliol integrity

ATL, RvE1, and RvD1 reduce leukocyte infiltration
and pro-inflammatory cytokines

Figure 3: Bioactions of immunoresolvents in diseases. Key multi-pronged anti-inflammatory and pro-resolution actions of SPM in diseases.
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example, MФ ingestion of apoptotic PMN concomitantly initiate 
tissue resolution [15,16] and the biosynthesis of LXA4, RvE1, and 
PD1, but not LTB4 [33,85]. Along these lines, maresins are a new 
family of SPM produced by MФs identified with LM-metabolomics 
[86]. A 12/15-LO-dependent biochemical pathway converts DHA into 
14-hydroxydocosaexaenoic acid (HDHA), which is rapidly converted 
by isolated MФ into a new set of products, whose molecular structure 
was established [54] and recently confirmed [19]. Macrophage 12-LO 
converts this 14-HDHA intermediate into a 13,14-epoxide precursor of 
7,14-dihydroxydocosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid, named 
maresin (from macrophage mediator in resolving inflammation) 1 
(MaR1) (Figure 2) [54]. The complete stereochemical assignment 
and total organic synthesis of Mar1 have been achieved [19] and 
double bond geometry and chirality of 13,14-epoxy DHA elucidated 
together with novel bioactions [87]. These include inhibition of pro-
inflammatory LTB4 biosynthesis by LTA4 hydrolase as well AA 
conversion by 12-LO and regulation of M1/M2 macrophage phenotype 
(88). In addition to MaR1, a double dioxygenation product, namely 
7S, 14S-dihydroxydocosa-4Z,8E,10Z,12E,16Z,19Z-hexaenoic acid 

(7S,14S-diHDHA), formed by consecutive lipoxygenation of 14-
HDHA, was also identified and proved bioactive but less potent than 
MaR1 in stimulating efferocytosis with human cells [19,54].

GPCRs for SPM in Anti-Inflammation and Resolution
By the definition, SPM: a) are generated within the resolution 

phase of inflammation; b) limit leukocyte infiltration; c) enhance 
phagocytic activity of pro-resolving MФ to remove apoptotic cells 
and/or microbes; d) stimulate the clearance of PMN from mucosal 
surfaces and their anti-microbial actions. If a LM carries each of these 
bioactivities, then it falls into the category of SPM. Beside these general 
actions, each SPM possesses additional peculiar activities (Table 1). For 
instance, RvD1 and E1 oppositely regulate interferon γ, LXA4, and IL-5 
in airway exudates during the resolution of allergic inflammation [88] 
and reviewed in and [89]. In isolated cell systems and experimental 
models of inflammation and resolution, SPM proved to be active in 
the nano- to sub micromolar or nano- to low microgram dose range 
and to act through specific G-protein coupled receptors (GPCRs) in 
a stereospecific manner (Table 1). Given the important protective 

LXA4 and ATL, analogs
Target cell Actions References 

PMN Inhibit chemotaxis, adhesion to/transmigration across endothelial and epithelial cells. Reduce ROS generation, 
CD11b/CD18 expression, pro-inflammatory cytokines [117,155-160]

Monocytes/MФs Stimulate non phlogistic chemotaxis and adhesion. 
Enhance phagocytic activity [33,57,58, 161,162] 

Eosinophils Inhibit chemotaxis, IL-5, and eotaxin secretion [122,163,164] 
Platelets Inhibit Porphyromonas gingivalis-induced aggregation [159] 
T lymphocytes Reduce TNF-α production and increase CCR5 expression [165,166] 
B lymphocytes Decreases IgM and IgG production by activated B cells and their proliferation through ALX/FPR2 [167] 
NK cells Block cytotoxicity. Enhance pro-resolution NK-mediated apoptosis of eosinophils and PMN [112,168,169] 

Endothelial cells Block ROS production, inhibit VEGF-induced proliferation, decrease adhesion molecules. Stimulate prostacyclin 
and NO production. Enhance HO-1 expression [31,111,170-174] 

Epithelial cells Inhibit IL-8 release. Enhance epithelium repair through K channel activation and tight junction increase [175-177] 
Vascular smooth muscle cells Counteract PDGF-induced migration. Regulate cell phenotype [178] 
Fibroblasts Inhibit proliferation, pro-inflammatory cytokines, and MMP-3 [179,180] 
Mesangial cells Inhibit proliferation and pro-inflammatory cytokines [181-183] 
LXB4 and analogs
Monocytes Stimulate non phlogistic recruitment and adhesion [161,184] 
PMN Inhibit migration and adhesion [157,184] 
NK Inhibit cytotoxicity [112]
RvE1 and analogs 

PMN Decrease transepithelial and endothelial migration. 
Regulate adhesion molecules. Counteract TNF-α and LTB4 signaling [73,102,139, 185] 

Macrophages Enhance efferocytosis [33,186]
Platelets Reduce aggregation and counter ADP-P2Y12 signaling [138,106] 
Osteoclasts Inhibit bone resorption and cell fusion [53,106] 
RvD1 and analogs

PMN Decrease transepithelial and endothelial migration. 
Regulate adhesion molecules. Counter LTB4 and IL-8 actions. Decrease actin remodeling and chemotaxis [22,39,51] 

Macrophages Stimulate efferocytosis. Regulate miRNAs and target genes. enhance killing of bacteria. Promote M2 phenotype 
and actions [39,82,106 ,108] 

Microglial cells Inhibit IL-1β [187] 
Endothelial cells Reduce PMN rolling, adhesion, and diapedesis [188]
Vascular Smooth Muscle 
Cells Inhibit proliferation, migration, leukocyte adhesion, and pro-inflammatory mediators [189]

Gingival fibroblasts Decrease cytokine-induced prostaglandin E2 production while increasing LXA4. Enhances wound healing. [190] 

B lymphocytes Enhance IgG and IgM production [191]
Lung fibroblasts and epithelial 
cells Decrease IL-6, IL-8, MCP-1, and PGE2 production [192]

RvD2

PMN Reduces L-selectin shedding and CD18 expression. 
Inhibit interactions with endothelial cells [81] 
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function of acute inflammation against external or internal dangers 
and the need to prevent this reaction from becoming uncontrolled, it 
is not surprisingly that SPM have some overlapping immunoresolving 
actions. Further, the sites of biosynthesis for each SPM and the degree 
of cell distribution of their GPCRs may account for their selectivity and 
specificity within resolution programs.

The first evidence for receptor-mediated actions of LXA4 arises 
from studies by Nigham et al. that demonstrated stimulation of rapid 
lipid remodeling and pertussis toxin (PTX)-sensitive release of AA in 
PMN treated with LXA4 [89]. Specific, reversible, and stereoselective 
binding of synthetic (11,12-3H)-LXA4 to intact human PMN (with 
a Kd ~ 0.5 nM) further confirmed the involvement of membrane 
receptor, likely belonging to the GPCR superfamily, in LXA4 bioactions 
[90,91]. Screening of cDNA clones from differentiated HL60 human 
cells identified formyl peptide receptor like-1, an homologue of 
formyl receptor, as putative LXA4 GPCR [92]. This receptor has been 
renamed ALX/FPR2 in light of its high affinity for LXA4 [93] and is 
highly expressed in myeloid cells and at a lower extent in lymphocytes, 
dendritic cells, and resident cells [94]. Orthologous genes of the human 
ALX/FPR2 have been identified in rodents [95,96]. In addition to LXA4, 
ALX/FPR2 is activated by the glucocorticoid-induced protein AnxA1 
and its N-terminal peptides [13], representing the prototype of GPCR 
able to coordinate anti-inflammatory and pro-resolving activities of 
both lipid and peptide ligands. While earlier studies demonstrated 
that radio-labeled 15-epi- LXA4 binds at cysteinyl LT receptor 1 
(CysLT1) with equal affinity to LTD4, providing additional molecular 
mechanisms for ATL dampering CysLT signals in the vasculature 
[97], genetic manipulation of ALX/FPR2 and its orthologue in mice 
has provided evidence for the essential role of this GPCR in mediating 
LX actions. Indeed, myeloid-specific overexpression of human ALX/
FPR2 in mice resulted in increased sensitivity to suboptimal doses 
(10 ng/mouse) of the ligand Kstable analog, with >50% reduction in 
PMN infiltration to zymosan-induced peritonitis compared with 
<10% reduction in nontransgenic littermates [98]. On the contrary, 
ALX/FPR2 nullified mice displayed an exacerbated inflammation and 
delayed resolution phenotype and did not respond to endogenous and 
synthetic ligands [99]. More strikingly, ATL amounts and ALX/FPR2 
expression levels dictate both the magnitude and duration of acute 
inflammation in humans [100]. Hence, mechanisms that regulate its 
levels in tissues are of wide interest. In this regard, Simiele et al. recently 
unraveled the molecular basis of ALX/FPR2 transcriptional machinery, 
with the identification of the core promoter sequence, the elucidation 
of transcription factors and epigenetic mechanisms that regulate 
promoter activity, and the identification of the first inheritable SNP 
that impairs promoter activity in individuals at high cardiovascular 
risk [101].

At least two GPCRs are involved in mediating RvE1 actions, 
namely ChemR23 and BLT1 [73,102]. [3H]-RvE1 bound to ChemR23 
transfectants with high affinity (Kd=11.3 ± 5.4 nM) and stereoselectivity 
[73]. Also, the synthetic peptide fragment (YHSFFFPGQFAFS) derived 
from human chemerin that was earlier reported to be a ligand for this 
same receptor [103] displaced [3H]-RvE1 binding by ~70% when tested 
at 10 μM concentration, suggesting that RvE1 and chemerin share 
recognition sites on ChemR23 [73,104]. [3H]-RvE1 specific binding 
was also demonstrated with membrane fractions isolated from human 
PMN (Kd of ~50 nM) and was displaced by homoligand RvE1 (Ki ~ 
34 nM), LTB4 (Ki =0.08 nM) and LTB4 receptor 1 (BLT1) selective 
antagonist U-75302 (Ki =1.5 nM), but not by the chemerin peptide 
[102]. These results strikingly demonstrated that RvE1 binding sites 
are pharmacologically distinct from ChemR23 on human PMN and 
prompted to investigate whether RvE1 binds to LTB4 receptors. In 
these studies, [3H]-RvE1 also gave high affinity binding to recombinant 
BLT1 (Kd ~ 45 nM) that was competed by unlabeled LTB4 (Ki =3 
nM). In contrast, BLT2-overexpressing cells did not show [3H]-
RvE1 binding at concentrations up to 10 nM. These results clearly 
demonstrated that RvE1 binds to BLT1 on human PMN and acts as 
a partial agonist to attenuate LTB4 in coming signals in both mouse 
and human leukocytes [102]. Human ChemR23 is expressed in brain, 
kidney, cardiovascular, gastrointestinal, and myeloid tissues [73]. More 
recently, direct evidence for ligand-receptor interactions of RvE1 and 
its epimer 18S-RvE1 was provided using ChemR23 and BLT1 β-arrestin 
cells with EC50 (~ 6.3 pM) lower than that obtained with RvE1 (~0.14 
nM). 18S-RvE1 also antagonized LTB4-mediated BLT1 activation 
with higher potency and efficacy than RvE1 in BLT1 β-arrestin cells 
[74]. Hence, RvE1 and 18S-RvE1 can share the same site(s) of specific 
binding to human ChemR23 as well as BLT1.

RvE2 exerts potent and cell-specific bioactions on human leukocytes 
[77,78]. Recently, tritium-labeled [3H]-RvE2 was synthesized and gave 
comparable Kd (~ 25 nM) with other SPM in isolated human PMN. In 
addition, using ChemR23 and BLT1 β-arrestin cells RvE2 was found to 
share, at least in part, receptors with RvE1 [74].

RvD1 also exerts specific bioactivities on human PMN (e.g., PTX-
sensitive reduction of F-actin polymerization), did not stimulate Ca2+ 
release, and did not activate cAMP in human PMN [105]. [3H]-RvD1 
prepared by catalytic hydrogenation of synthetic [13,14]-acetylenic 
RvD1 methyl ester specifically bound to human PMN with high affinity 
(Kd ~ 0.17 nM) and was displaced by cold RvD1 (100%) and LXA4 
(~ 60%), but not the AnxA1-derived Ac2-12 peptide [105]. [3H]-RvD1 
also showed specific binding with human monocytes [105]. Screening 
of phylogenetically related GPCR linked to inflammation and 
chemotaxis in NF-κB-responsive engineered cells demonstrated that 

Macrophages Stimulates phagocytosis [81] 
Endothelial cells Activates NO biosynthesis [81] 
Vascular Smooth 
Muscle Cells Inhibits proliferation, migration, leukocyte adhesion, and pro-inflammatory mediators [189]

(N)PD1 
PMN Enhances CCR5 expression on apoptotic cells [165] 
Macrophages Stimulates efferocytosis [33] 

Lymphocytes Blocks chemotaxis and pro-inflammatory genes. Induces apoptosis via lipid raft clustering. Increases CCR5 
expression on apoptotic cells during resolution. [151,165] 

Glia cells Reduces NF-κB activation and COX-2 expression. 
Represses Aβ42-triggered activation of pro-inflammatory genes while upregulating anti-apoptotic genes [83,193,194] 

Retinal pigment cells Protects from apoptosis [195] 
Mar1 
Macrophages Enhances efferocytosis and promotes M2 differentiation [54,87]

Table 1: Cell-specific bioactions of SPM and stable analogs.
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RvD1 significantly reduced TNF-α-induced NF-κB activation in cells 
overexpressing either the lipoxin receptor ALX/FPR2 and the orphan, 
GPR32, but not other GPCRs (e.g. BLT1, BLT2, CB1, GPR-1, FPR, 
and ChemR23) [105]. Moreover, RvD1 dose-dependently activated 
ALX/FPR2 and GPR32 in recombinant β-arrestin cells with EC50 
in the low picomolar range (EC50 ~ 1.2 pM for ALX/FPR2; 8.8 pM 
for GPR32) [105]. In comparison, at equimolar concentrations AT-
RvD1, RvD1-carboxy-methyl ester, and a metabolically stable analog 
17 (R/S)-methyl RvD1-ME, activated both ALX/FPR2 and GPR32 
with similar potencies and EC50, whereas the biosynthetic precursor 
native DHA was not active with GPR32 and ALX/FPR2 [106]. Hence, 
RvD1, AT-RvD1, and the derivatives carboxy methyl ester and 
17(R/S)-RvD1 directly activate ALX/FPR2 and GPR32. Studies with 
genetically engineered mice and selective receptor antagonists or 
blocking antibodies confirmed the ALX/FPR2 and GPR32 dependency 
of immunoresolving actions of RvD1 [31,39,107-114], which involves 
regulatory mechanisms on transcription factors, microRNAs, and 
select genes [108]. Human GPR32 was identified in peripheral blood 
leukocytes and arterial and venous tissues using a cDNA array. It is 
mostly abundant on PMN, monocytes and macrophages and is also 
present on vascular endothelial cells [105]. The murine ortholog 
of GPR32 is currently unknown whereas it exists in chimpanzees. 
Regulatory mechanisms of GPR32 are unknown, while those of 
ALX/FPR2 have recently been uncovered [101]. Although specific 
receptors for RvD2, RvD3 and RvD4 have not yet been uncovered, the 
stereoselective actions of RvD2 were inhibited by petussis toxin [81], 
implicating the involvement of GPCRs. More recently, Chiang et al. 
showed activation of RvD1-receptor GPR32 is activated by RvD5 with 
the recombinant human GPR32 [82].

Specific binding of tritium-labeled (N) PD1 was demonstrated with 
both retinal pigment cells (RPE) and human PMN (Kd ~ 30 pmol/mg 
of cell protein), although, at high concentration of radio-ligand (> 10 
nM), non-specific binding was evident, likely because of the highly 
hydrophobic nature of this compound. Also, in competition studies, 
the free acid form of cold (N)PD1 showed 90-100% displacement of 
radio-labeled (N)PD1, while other structurally related omega-3 fatty 
acid-derived compounds gave only minimal or no displacement [115].

Immunoresolving Actions of SPM in Aging-Related 
Diseases
Lipoxins and ATL

Lipoxins and ATL represent the prototype of immunoresolvents 
biosynthesized from AA during a lipid mediator (LM) class switching 
characteristic of self-contained acute inflammatory reactions [12,116]. 
They were the first class of PUFA-derived autacoids identified 
to carry dual anti-inflammatory and pro-resolution action, e.g., 
reducing vascular permeability and inhibiting PMN recruitment 
to inflammatory loci while stimulating monocytes/MФs in a non 
phlogistic manner [57]. LXs undergo in vivo rapid inactivation 
primarily through prostaglandin dehydrogenase-mediated oxidation 
and reduction [117]. Therefore, several synthetic stable analogs were 
designed to resist in vivo catabolism and proved to carry potent actions 
in vivo and in vitro [44-46,118,119] (Tables 1 and 2). Intriguingly, 
these anti-inflammatory and pro-resolving bioactions do not involve 
cell toxicity or immunosuppresion, but rather a fine tuning of immune 
processes. For instance, LXA4, ATL, stable analogs reduce PMN 
infiltration and prevents connective tissue and bone loss in a rabbit 
model of ligature-induced periodontitis [120]. They also attenuate the 
severity of experimental colitis (diminishing weight loss, inflammation 
and immune dysfunction) [121], asthma (dampening airway hyper-

responsiveness and pulmonary inflammation) [122,123], and cystic 
fibrosis (decreasing neutrophilic inflammation, pulmonary bacterial 
burden and disease severity) [124]. Notably, these, and many others, 
chronic inflammatory diseases present evidence for defective LX-
mediated pro-resolution mediators and mechanisms [125-128].

Unresolved inflammation is also a hallmark of metabolic diseases, 
such as obesity and diabetes, and has pathophysiological roles in 
disease-associated multi-organ dysfunction [129]. Ex vivo studies with 
adipose tissues explanted from aging mice demonstrated that LXA4 
increases the expression of molecules critical in insulin sensitivity (e.g., 
the glucose transporter GLUT-4 and IRS-1), restores insulin sensitivity 
in the tissue, and decreases major pro-inflammatory cytokines such as 
IL-6 while increasing the pro-resolving IL-10 [130]. These studies also 
demonstrated that LXA4 increases MФ-mediated glucose uptake in 
vitro [130]. Finally, results from Borgeson, Docherty et al. demonstrate 
that LXA4 and a synthetic analog modulate inflammation and tissue 
degeneration in experimental hind-limb ischemia/reperfusion injury 
[46,129] and diabetic renal fibrosis [131], providing further areas of 
investigation for pro-resolution therapies in chronic inflammatory 
diseases.

E-series resolvins

Resolvins of the E-series encompasses several molecules. Among 
them, RvE1 was the first isolated and studied in depth. RvE1 displayed 
potent stereoselective actions in vivo and with isolated cells (Tables 1 
and 2). At nanomolar levels in vitro, RvE1 strikingly reduced human 
PMN transendothelial migration, dendritic cell migration and 
interleukin (IL)-12 production [52,73]. In many pre-clinical models 
of diseases RvE1 displays potent counterregulatory actions that 
protect against leukocyte-mediated tissue injury and excessive pro-
inflammatory responses. For instance, administration of RvE1 in rabbit 
and mouse models of periodontitis reduces PMN infiltration, prevents 
loss of connective tissue and bone, and promotes tissue regeneration 
[104,132,133]. Furthermore, RvE1 protects against oxygen-induced 
retinopathy [134] and dry-eye syndrome [135,136], a common 
disorder of the tear film affecting a significant percentage of the old 
population [137]. Also, recently RvE1 proved to protect myocardium 
from ischemia-reperfusion injury reducing the size of infarct area 
[138]. Interestingly, among SPM, RvE1 carries peculiar, ChemR23-
mediated, bioactions on leukocytes and platelets, reducing leukocyte 
rolling to venules in vivo, regulating adhesion molecules, and blocking 
adenosine diphosphate-induced aggregation and signaling, which 
are pivotal steps in thrombus formation [106,139]. Together, these 
findings provide evidence for specific, GPCR-mediated mechanisms 
that may account for some of the cardioprotective actions noted with 
dietary supplementation with EPA together with low-dose aspirin [69].

D-series resolvins

RvD1 and AT-RvD1 are potent regulators of inflammatory 
responses both in human and murine cells. For instance, they stop 
PMN transendothelial and transepithelial migration [52], and 
regulate endotoxins-induced cytokine production by MФs [140]. In 
murine zymosan-induced acute peritonitis, RvD1 lowered the Ψmax 
and shortened the Ri by ~ 4 h demonstrating the ability to expedite 
the onset of resolution [106]. Furthermore, microRNA expression 
analyses from exudate cells demonstrated that RvD1 controls a specific 
set of pro-resolving miRNAs miR-21, miR-146b, miR-208a, and miR-
219 in vivo in a time- and GPCR-dependent manner as part of its 
immunoresolving actions [106]. Indeed, target mRNAs for the RvD1-
GPCR-regulated miRNAs included genes of the NF-kB activation 
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SPM Disease model Mechanism of action References
Lipoxin
A4/ATL Mouse/dermal inflammation Inhibits neutrophil recruitment and vascular leakage [95]

Mouse/dorsal air pouch Inhibits neutrophil recruitment [118]
Rabbit/periodontitis Reduces PMN infiltration and prevents connective tissue and bone loss [120]
Mouse/peritonitis Inhibits neutrophil recruitment and lymphatic removal of phagocytes [32,33]

Mouse/asthma Inhibits airway hyper-responsiveness and pulmonary inflammation; regulates natural killer and type 2 
innate cell activation [122,169]

Mouse/cystic fibrosis Decreases neutrophilic inflammation, pulmonary bacterial burden and disease severity [124]

Mouse/ischaemia/
reperfusion (I/R) injury

Attenuates hind-limb I/R-induced lung injury; causes detachment of adherent leucocytes in mesenteric 
I/R vessels; reduces myocardial infarct size and area at risk in myocardial I/R; diminishes leukocyte 
recruitment to venules following I/R in a ALX/FPR2 dependent manner

[196-198]

Mouse/cornea inflammation Accelerates cornea re-epithelialization, limits sequelae of thermal injury (i.e.
neovascularization, opacity) and promotes host defense [199]

Mouse/angiogenesis Reduces angiogenic phenotype: endothelial cell proliferation and migration [111]
Mouse/bone marrow
transplant (BMT) Protects against BMT-induced graft- versus-host diseases (GvHD) [200]

Rat/glomerulonephritis Reduces leukocyte rolling and adherence; decreases neutrophil recruitment  [201]
Rat/hyperalgesia Prolongs paw withdraw latency, reducing hyperalgesic index and reduces paw edema [202,203]
Rat/pleurisy Shortens the duration of pleural exudation [163]
Mouse/tumour growth Suppresses the growth of transplanted tumours in mice; inhibits angiogenesis [204]
Mouse/allograft rejections Prevents acute rejection of vascularized cardiac and renal allografts [205]
Mouse/arthritis Inhibits oedema formation and PMN influx, reduces TNF-α and LTB4 levels [206]
Rat/acute pancreatitis Inhibits oedema formation and PMN influx, reduces TNF-α and LTB4 levels [207]
Zebrafish/mycobacterial
infection Reduces bacterial burden and growth; Improves microbial containment by phagocytes [47]

Rat/sepsis Increases survival post cecal ligation puncture; reduces cytokine storm due to NF-κB activation; controls 
bacterial load and enhances MФ recruitment but not phagocytosis [208]

Human trial/infantile eczema Reduces the severity and area of eczema and improves the overall quality of life after topical application; 
shows comparable efficacy and safety than the glucocorticoid mometasone [209]

Rat/renal fibrosis Attenuates inflammation, collagen deposition, macrophage infiltration, and apoptosis [131]
Mouse/cerebral malaria Reduces brain inflammation and lymphocyte infiltration; enhances survival [210]

Mouse/Alzheimer’s disease Reduces NF-κB activation and cytokine production; stimulates recruitment of alternative/anti-inflammatory 
microglial cells; reduces Aβ amyloid levels [162]

Mouse/Toxoplasma gondii 
infection Reduces parasite burden in cardiomiocytes; mediates protective effects of low dose aspirin [211]

Resolvin
E1/18R-
RvE1

Mouse/dorsal air pouch Inhibits neutrophil recruitment [11]

Mouse/peritonitis Inhibits neutrophil recruitment, regulates chemokine/cytokine production and promotes lymphatic removal 
of phagocytes [32,33,73]

Rabbit/periodontitis Reduces PMN infiltration, prevents connective tissue and bone loss,promotes healing of diseased tissues 
and promotes regeneration of lost soft tissue and bone [104,132]

Mouse/retinopathy Protects against neovascularization [134]

Mouse/colitis Decreases PMN recruitment and pro- inflammatory gene expression; improves survival and reduces 
weight loss; favors LPS-Detoxification through induction of intestinal alkaline phosphatase  [86,212,213]

Mouse/asthma Reduces IL-23 and IL-6, and increases IFN-γ and LXA4 in lungs to dampen airway inflammation; 
decreases eosinophil and lymphocyte recruitment [34,214,215]

Mouse/obesity Regulates adipokines and protects against liver steatosis [145]
Mouse/inflammatory pain Inhibits spontaneous pain and heat and mechanical hypersensitivity; attenuates neuropathic pain [216,217]
Rat/cardiac ischaemia/
reperfusion injury Reduces infarct size [138]

Mouse/allograft rejections Prevents acute rejection of
vascularized cardiac and renal allografts [206]

Mouse/dry eye Promotes tear production, corneal epithelial integrity, and decreases in inflammatory inducible COX-
2. RvE1 inhibits keratocyte transformation to myofibroblasts and lowers the number of monocytes/
macrophages

[135]

Mouse/herpes simplex virus Reduces severity of herpes simplex virus-induced ocular lesions, reduces angiogenesis and stromal 
keratitis [149,218]

Mouse/ligature-induced 
periodontitis Prevents alveolar bone loss and enhances tissue regeneration; increases osteoprotegerin levels [133]

Planaria/tissue regeneration Stimulates tissue regeneration after surgical head rescission [219] 
Mouse/pneumonia and acute 
lung injury 

Decreases lung neutrophil infiltration upon acid-induced lung injury and E.coli infection; enhances 
clearance of bacteria; reduces pro-inflammatory cytokines in lungs; improves survival [220]

Mouse/acute lung injury Reduces leukocyte accumulation induced by E. coli or carrageenan plus myeloperoxidase; enhances 
PMN apoptosis and their removal by MФs [221]
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pathway (e.g. IkB kinase and tumor necrosis factor receptor-associated 
factor 6), cytokines and chemokines (e.g., IL-8, 10, 12, interferon-α and 
β), programmed cell death 4, a tumor suppressor molecule that acts as 
a translational repressor of IL-10 [141], and 5-LO, a pivotal enzyme 
for the biosynthesis of LT and SPM. Interestingly, in experimental 

renal fibrosis, LXA4 attenuated the production of pro-fibrotic proteins 
(e.g., fibronectin, N-cadherin, thrombospondin, and the notch ligand 
jagged-1) in cultured human proximal tubular epithelial cells via up-
regulation of microRNA let-7c, further indicating the involvement of 
miRs in the SPM-triggered protective actions in mammals [142]. Along 

Mouse/atopic dermatitis Attenuates skin swelling; improves lesions; reduces pro-inflammatory cytokines and leukocyte infiltration [222]
Resolvin 
D1/AT-
RvD1 

Mouse/peritonitis Inhibits neutrophil recruitment; shortens resolution interval; regulates miRNAs and target genes in 
resolving exudates; reduces LTB4, PGD2, PGF2α, TXA2 in peritoneal exudates 

[53,71,107, 
108,188,223]

Mouse/E. coli (peritoneal) and 
S. aureus (skin) infection 

Reduces bacterial titres and hypothermia; increased survival; enhances microbial containment and killing 
by phagocytes; lowers antibiotic requirement; shortens resolution interval [224]

Mouse/dorsal air pouch Inhibits neutrophil recruitment [52,71,225,226] 
Mouse/kidney ischemia-
reperfusion 

Protects from ischaemia/reperfusion-induced kidney damage and loss of function; regulates 
macrophages [227]

Mouse/retinopathy Protects against neovascularization [134] 

Mouse/inflammatory pain Inhibits spontaneous pain, heat and mechanical hypersensitivity; selectively blocks TRPV1 and TRPA1-
mediated pain [216,226]

Mouse/obesity Reduces inflammatory cytokines in adipose tissue macrophages; stimulates M2 macrophage 
differentiation; promotes resolution of adipose tissue inflammation [146] 

Mouse/T2 diabetes Reduces macrophage accumulation in adipose tissue; ameliorates insulin sensitivity; restores impaired 
resolution and promotes healing of diabetic wounds [40,111]

Rat/post-operative pain Reduces post-operative pain, tactile allodynia and hyperalgesia [227] 

Rat/inflammatory pain 
Decreases mechanical allodynia in colitis; reduces phosphorylation of NMDA glutamate receptors; 
does not affect anxiety-like behavior; decreases mechanical hypersensitivity and LPS-evoked TNF-α 
production 

[204,228] 

Mouse/pain Attenuates agonist-induced and inflammatory pain behaviors; inhibits TRPA1, TRPV3, and TRPV4 
receptors; does not affect basal sensitivity [218,229] 

Mouse/acute lung injury Blocks leukocyte infiltration and reduces cytokine levels in BALF [230] 
Mouse/corneal inflammation Reduces leukocyte infiltration and hemangiogenesis [231] 
Rat/uveitis Reduces leukocyte infiltration and cytokine production in LPS-induced uveitis [232]
Mouse/colitis Reduces disease activity index, PMN number, and pro-inflammatory levels [233] 
Mouse/pain Attenuates pain signals and behaviors by blocking TRPV3 [234] 

Rats/arthritic pain Possesses anti-hyperalgesic effects upon systemic administration. Decreases TNF-α and IL-1β 
production [235] 

Mouse/ temporomandibular 
joint inflammation Reduces complete Freund’s adjuvant-induced neutrophil infiltration [47] 

Resolvin 
D2 Mouse/peritonitis Blocks further PMN infiltration into the peritoneum [81] 

Mouse/sepsis Prevents hypothermia, decreases bacterial load in the blood and peritoneum, promotes survival [81] 

Mouse/colitis Improves disease activity index, weight loss, and colonic PMN infiltration. Reduces pro-inflammatory 
levels [233] 

Mouse/burn wound Reduces thrombosis of the deep dermal blood vessels; prevents and subsequent dermal necrosis; 
decreases PMN-mediated tissue damage [235] 

(Neuro)
Protectin 
D1/AT-
PD1 

Mouse/peritonitis Inhibits neutrophil recruitment and regulates chemokine/cytokine production. Promotes lymphatic removal 
of phagocytes; regulates T-cell migration; enhance CCR5 expression on apoptotic leukocytes [32,33,72,152,165] 

Mouse/Influenza Inhibits virus replication and improved the survival and pathology of severe influenza [236]
Mouse/asthma Protects from lung damage, airway inflammation and hyper-responsiveness [237]
Human/asthma PD1 is generated in human asthmatic patients [238] 
Mouse/kidney ischaemia/
reperfusion 

Protects from ischaemia/reperfusion-induced kidney damage and loss of function; regulates 
macrophages [226] 

Mouse/retinopathy Protects against neovascularization [134] 
Rat/ischemic stroke Inhibits leukocyte infiltration, NF-κB and COX-2 induction; reduces infarct volumes [83,152] 
Human/Alzheimer’s disease Diminished PD1 production in human Alzheimer’s disease [238] 
Mouse/liver injury Protects necro-inflammatory liver injury [145] 
Mouse/Alzheimer’s disease Down-regulates inflammatory genes; reduces amyloidogenic Aβ42 cleavage; protects from apoptosis [153]
Rabbit/corneal damage Promotes nerve regeneration after surgical damage; reduces inflammation [239] 
Mouse/ herpes simplex 
virus (HSV)-induced stromal 
keratitis (SK) 

Lowers infiltration of PMN and CD4+; diminishes the production of proinflammatory cytokines, 
chemokines, and angiogenic factors [149] 

Maresin-1 Mouse/peritonitis Blocks PMN infiltration into the peritoneum [54] 
Planaria/tissue regeneration Stimulates tissue regeneration post surgical damage [219] 
Mouse/ pain Reduces pain [219]

Table 2: Bioactions of SPM in Ageing-Related Inflammatory Diseases.
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this line, results from Fredman et al., Li et al. [141,142] demonstrate 
that delayed resolution of acute peritonitis, triggered by high doses of 
zymosan A, dysregulates pro-resolving microRNA and lipid mediator 
profiles, namely with decreased miR-219 expression along with 
increased LTB4 and decreased SPM production [143]. Finally, recent 
studies reveal that miR-466l was temporally regulated in murine 
exudate leukocytes and controls prostanoid and immunoresolvent 
biosynthesis during resolution [144], providing novel evidence that 
miRs play roles in endogenous SPM-driven resolution pathways, whose 
failure can contribute to the development of chronic inflammation and 
diseases.

The role of unresolved inflammation, triggered by alterations in 
the nutrient sensing and regulation mechanisms, in obesity, insulin 
resistance, and type 2 diabetes (T2D) is widely appreciated [129]. 
The beneficial effects of SPM from omega-3 RvE1 and PD1 in pre-
clinical models of obesity and diabetes have been shown in ob/ob 
mice, in which both omega-3-enriched diet and RvE1 administration 
increased expression of genes involved in glucose transport (e.g., 
GLUT-4) insulin signaling (e.g., IRS-1), and insulin sensitivity (e.g., 
PPARγ) [145]. Further studies also revealed that RvD1 improves 
insulin sensitivity, reduces the pro-inflammatory phenotype of 
adipose tissue macrophages [111], and promotes the repair of 
diabetic wounds in leptin-receptor deficient mice [40]. Interestingly, 
RvD1 also enhances the resolution of inflammation in adipose tissue 
by skewing MФs towards an anti-inflammatory/pro-resolution 
phenotype, with decreased pro-inflammatory adipokines in parallel 
with increased expression of anti-inflammatory genes [146]. Therefore, 
these results suggest that stimulating resolution with the endogenous 
immunoresolvent RvD1 could provide a novel therapeutic strategy for 
treating inflammation-related complications of obesity and obesity-
induced diabetes.

Neuroprotectins

Biosynthesis of (N) PD1 occurs in neural tissues in response to 
injury, ischemia-reperfusion, and exposure to β-amyloid peptides 
from DHA, the most abundant omega-3 PUFA in nervous tissue and 
retina [83,147,148]. Consistent with its main site of biosynthesis, (N) 
PD1 carry exquisite tissue-protective and anti-inflammatory action 
within the brain and the eye (Tables 1 and 2) where inflammation plays 
key pathophysiological roles in degenerative and ischemic illnesses. 
For instance, (N) PD1 blocks PMN transmigration across endothelial 
cells in a stereospecific manner [72] and reduces leukocyte infiltration 
in animal models of Herpes Virus Simplex-induced stromal keratitis 
[149]. Interestingly, intracerebroventricular infusion of 17S-HpDHA, 
a 12/15-LO product of DHA and precursor of SPM, increased levels of 
(N)PD1 in hippocampus and attenuated neuroinflammation initiated 
by endotoxins at least in part via its conversion to SPM [150]. In 
addition, (N) PD1 reduces leukocyte accumulation, NF-κB activation, 
and COX-2 induction, as well as the size of damaged areas in rats 
following experimental stroke [83,151], providing novel therapeutic 
strategies for treating ischemic episodes in old patients. Alzheimer’s 
disease (AD) is the major cause of dementia in elderly and is 
determined by accumulation of amyloid Aβ plaques in the brain, which 
triggers neuroinflammation [152]. In this setting, (N) PD1 is a potent 
counter-regulator of the inflammatory response in hippocampus of 
AD mice and primary human neurons. In particular, (N) PD1 reduces 
expression of Aβ-42 -triggered expression of pro-inflammatory genes, 
suppresses Aβ42 peptide shedding by β-secretase-1, shifting the 
β-amyloid breakdown towards a non amyloidogenic pathway, and 
protects neurons from apoptosis [153]. Interestingly, recent studies 
by Medeiros et al. demonstrate that aspirin-triggered 15-epi-LXA4 

also ameliorates AD symptoms in mice, reducing pro-inflammatory 
mediators and stimulating clearance of Aβ deposits by specialized 
microglial cells [154]. Together, these results highlight the important 
protective functions of SPM in nervous system and prompt to 
investigate their actions in other neurodegenerative diseases.

Maresins

Consistent with general SPM actions, both Mar1 and 7S, 
14S-diHDHA reduce PMN infiltration in inflamed tissues and 
enhance MФ phagocytosis (Table 1). In addition they carry potent, 
stereospecific actions linked to analgesia and organ repair (Table 2). 
In particular, Mar1 reduces capsaicin-induced transient receptor 
potential V1 currents in dissociated primary sensory in neurons in a 
PTX-sensitive manner and spontaneous pain behaviors (i.e., flinching/
licking) in mice [19].

Further, Mar1, biosynthesized by brown planaria in response to 
wound, accelerates the repair of damaged tissue [19]. Since chronic 
inflammation, pain, and tissue degeneration are common signs of 
aging-related diseases and can cause disability and discomfort, these 
findings on anti-inflammatory, pain-relieving, and regenerative actions 
of Mar1 are intriguing.

Summation and Conclusions
In summation, the acute inflammatory response is a highly 

coordinated defensive response and complete resolution is its ideal 
outcome, whereas unresolved inflammation plays causative roles 
in chronic, degenerative and metabolic diseases. Resolution of 
inflammation is an active process governed in part by specialized 
immunoresolvent lipid-derived chemical mediators or SPM. SPM act 
in vivo and in vitro to promote the return to homeostasis and their 
bioactions are highly stereospecific, GPCR-mediated, and exerted at 
low doses. Results from the first human clinical trial with a resolvin 
analog are striking and can open new opportunities for resolution 
pharmacology. It is therefore envisageable that more human trials 
will be launched in the near future that will help to test the notion 
that stimulating resolution can improve the way we treat age-related 
chronic inflammatory diseases.

“Nunc autem visum est mihi de senectute aliquid ad te conscribere” 

(Now, I consider appropriate to write for you something about the 
old age) 

Marcus Tullius Cicero (Cato Maior De Senectute, 44 BC) 

To my wife and my family.
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