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Introduction
Human African Trypanosomosis (HAT) can be caused by 

Trypanosome brucei gambiense or Trypanosoma brucei rhodesiense. T. 
b. gambiense is responsible for 98% of all HAT cases and is endemic
in West and Central Africa. T. b. rhodesiense infection accounts for
the remaining 2% of HAT cases and is prevalent in East Africa. HAT
can be divided into two stages: an early haemolymphatic stage and
a late meningoencephalitic stage. During the early stage the parasite
proliferates in the blood and lymphatic system. When the parasite
crosses the blood brain barrier, the late stage begins. Both stages
accommodate their own symptoms [1-3], but in general HAT is a
wasting disease in which a progressive loss of fitness occurs [4]. The
characteristic sleep disturbances, responsible for the name Sleeping
Sickness, cause a deregulation of the circadian rhythm [1,3].

AAT can be caused by Trypanosoma brucei brucei, Trypanosoma 
congolense, Trypanosoma equiperdum, Trypanosoma simiae, 
Trypanosoma suis and Trypanosoma vivax. AAT is a similar wasting 
disease as HAT and affects both wild and domestic animals. AAT 
has an immense impact on agriculture and economic development 
of the affected rural areas. According to the Food and Agricultural 
organization (FAO) the total losses, in terms of agricultural Gross 
Domestic Product, is estimated at US$ 4.75 billion per year [4]. 

Antigenic variation is an organized mechanism of surface coat 
switching that trypanosomes employ to evade the host immune system 
[5,6]. The surface coat of African trypanosomes consists of 107 densely 
packed copies of a variant surface glycoprotein (VSG). This surface 
coat is highly immunogenic and permits the host to rapidly mount 
an anti-VSG immune response; however African trypanosomes can 
simply switch to a different coat of VSGs, previously unseen by the 
host’s immune system. The T. brucei genome contains approximately 
1000 non-expressed VSG genes and pseudo-genes, giving the parasite a 
virtual unlimited number of VSG’s to employ throughout the infection 
[7-10]. New mosaic VSGs can be composed of silent VSG genes and 
pseudo-genes via partial gene conversion. VSG expression follows a 
loose hierarchy and mosaic VSGs appear increasingly as the infection 
proceeds, contributing immensely to antigenic variation and infection 
chronicity [11]. 

Attempts to eradicate HAT from the African continent are 
hampered by the large animal reservoir in which the parasite resides 
[12]. This reservoir allows tsetse flies to keep transmitting the disease 
to humans. Hence, prophylactic vaccination is the only way to protect 

the human population from HAT. However, over the last decades 
different vaccination strategies have been designed, but not a single 
one obtained effective sterile immunity [13]. This is due to the fact 
that African trypanosomes possess multiple mechanisms to evade and 
manipulate the host immune system to ensure their survival and hence 
transmission potential. Due to the VSG antigenic variation system, 
parasites can continue to escape the host immune system. The increasing 
suppression of the immune system as the infection progresses further 
ensures parasite survival.

An alternative to sterile immunity is anti-disease vaccination 
targeting infection-associated pathology. 

Immunopathology

Upon infection, the extracellular parasites replicate and proliferate 
in the host’s bloodstream and lymphatics where they are constantly 
exposed to the host’s immune system. This evokes a strong type 1 
immune response [14-16], and together with antibodies and cytotoxic 
effector molecules this allows the host to control the first parasitemia 
peak [17]. However, African trypanosomes have acquired various 
mechanisms to manipulate and evade the host immune response, 
evading effective elimination and establishing a chronic infection [18]. 
Hence the bloodstream no longer poses a hostile threat, but has become 
a niche where trypanosomes thrive and obligatory await transmission 
through the bites of tsetse flies, ideally without causing severe infection-
associated pathology to their host. However, as the infection progresses, 
the immune system becomes increasingly exhausted and suppressed 
[19,20], leading to loss of parasitemia control, severe inflammation-
associated pathology and ultimately death of the infected host. T. b. 
brucei infection in C57Bl/6 mice is a commonly used mouse model to 
study the immune response and the host parasite immune interface. 
This infection model is characterized by low levels of parasitemia 
accompanied by high levels of pathology (weight loss & anemia) [16]. 
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The onset of inflammation: IFNγ as a crucial driver

After the onset of infection, parasite antigens are continuously 
released into the host bloodstream and lymphatics. Shedded VSG 
molecules and parasite DNA are considered to be the two major 
pathogen associated molecular patterns (PAMPS) implicated in the 
initiation of the immune response [21]. Consequently, NK and NKT 
cells are quickly activated [22]. NK and NKT cells can be directly 
activated through their pattern recognition receptors and T cell 
receptors respectively, or indirectly through the production of IL-15 
and IL-12 by myeloid cells [23-27]. Upon activation, NK and NKT 
cells produce IFNγ. Subsequently CD8 T cells and CD4 T cells are 
activated and contribute to the IFNγ production during early infection 
[22]. Antigen-specific T cell activation during T. b. brucei infection has 
been extensively described [28-30], and a T cell-dependent antibody 
response is critical for control of the first parasitemia peak [17,31]. 
However, non-specific activation of CD8 T cells has also been reported 
via a molecule called Trypanosome Lymphocyte Triggering Factor 
(TLTF), which acts directly on CD8 T cells to induce IFNγ production 
[32]. Concomitantly to early lymphocyte activation, trypanosome 
PAMPS activate monocytes, neutrophils, macrophages and DCs via 
their PRR [21,33]. IFNγ further activates these cells and the production 
of trypanocidal factors including TNF, reactive nitrogen intermediates 
and reactive oxygen intermediates is induced [21,34-36]. Antigen 
presenting cells are then recruited to secondary lymphoid organs where 
they initiate trypanosome-specific adaptive immunity.

IFNγ is a crucial driver of the type 1 immune response during 
murine trypanosome infection. Without IFNγ, the characteristic early 
pro-inflammatory cytokines are absent and there is no recruitment 
or activation of myeloid cells [22]. Interestingly, this coincides with a 
higher and prolonged parasitemia peak and a reduced survival time 
[37,38]. In this respect IFNγ has been denoted a protective function, 
despite its implication in infection-associated inflammation and its 
associated pathologies. 

A strong type 1 inflammatory reaction is not a unique 
characteristic of murine trypanosome infections. Pathology of human 
trypanosomosis involves a similar detrimental inflammatory reaction 
as pro-inflammatory mediators, among which IFNγ, are found in 
elevated levels in serum and cerebral spine fluid of infected patients, 
and correlate to signs of inflammation and neurological disorders 
[39-42]. Likewise, during bovine African trypanosomosis in cattle, 
production of pro-inflammatory cytokines correlates to disease severity 
[43,44]. The strong type 1 pro-inflammatory response therefore seems 
to be a hallmark of the general host-pathogen interaction during 
trypanosomosis. 

For the host it seems that although the inflammatory response 
induces inflammation-associated pathologies, it aids in parasite control 
and consequently survival via (i) activation of myeloid cells and 
consequent induction of trypanocidal mediators and (ii) the induction 
of parasite-specific antibodies [45]. On the other hand, while the 
induction of this amount of inflammation is detrimental for the survival 
of the parasite as an individual, a better control of the entire parasite 
population is beneficial as this leads to a prolonged host survival and 
consequently infection chronicity and enhanced transmission potential. 
Indeed, the parasite has no ‘intention’ of killing the host as a dead host, 
equals a dead parasite.

Inflammation associated pathology: anemia and B cell 
destruction

A first pathology directly linked to IFNγ-driven inflammatory 
reaction is acute anemia. In mice, IFNγ, produced early in the infection 
by NK, NKT and CD8 T cells activates and recruits monocytes and 
neutrophils to liver and spleen [22,46]. Here monocytes differentiate 
to monocyte-derived macrophages [22]. Due to the pro-inflammatory 
environment and direct IFNγ signaling, these cells display enhanced 
phagocytosis of circulating RBC. This results in a 50% reduction in RBC 
numbers within 48 hours after control of the first parasitemia peak [47].

In trypanosome-infected cattle, anemia is induced early in the 
infection and hyper-activated macrophages are correlated to massive 
erythrophagocytosis in spleen and liver [44,48-50]. Similarly, during 
human trypanosomosis, enhanced erythrophagocytosis of damaged 
RBC is also described [51], although it is not clear at what point during 
the infection anemia is induced. While anemia contributes to pathology, 
there is no evidence of anemia-induced mortality in trypanosome-
infected mice or natural hosts [1-3,16,48,52,53].

Induction of anemia could be a way for the host to control the 
infection. Pro-inflammatory signals, in addition to increased RBC 
phagocytosis, can result in higher iron retention in erythrophagocytozing 
cells. As iron is an essential nutrient for the parasite, deprivation of 
iron could limit parasite growth. Indeed, iron starvation is a frequently 
employed host tactic to battle invading pathogens [54]. It is possible 
that this protective effect significantly outweighs the detrimental effect 
of anemia, and has therefore been selected throughout the evolution 
as a consequence of host-pathogen interactions. Indeed, in the chronic 
phase of murine T. b. brucei infection, enhanced RBC phagocytosis leads 
to higher iron retention in erythrophagocytic cells [14,55]. However, 
during the acute infection stage both genes for iron export and iron 
retention are upregulated in phagocytozing cells, and serum iron 
concentrations increase [14,55]. In this way, enhanced iron availability 
in the blood can aid individual parasites in their survival during the 
first proliferation stage and perhaps protect them from immediate 
eradication. Iron retention in the chronic infection stage could ensure 
chronic parasitemia control, prolonged survival and hence augmented 
transmission potential.

A second murine T. b. brucei-infection associated pathology, which 
is at least partly associated to inflammation, is the destruction of the 
B cell compartment. In mice, immediately after the acute infection 
phase, various splenic B cell subsets disappear [56,45,57-59]. Multiple 
factors can contribute to this phenomenon. First of all, polyclonal B 
cell activation can immediately contribute to exhaustion of the splenic 
Marginal zone B (MZB) and Follicular B (FoB) cells. Although this has 
not been described for trypanosome infections, IFNγ plays a major 
role in the induction of polyclonal B cell activation during Plasmodium 
chabaudi infections [60]. Hence it could be hypothesized that IFNγ 
can play a similar role during T. b. brucei infections. Secondly, the 
continuous induction of new humoral responses with each new VSG 
coat and parasitemia wave, could lead to an excess of B cell activation, 
resulting in exhaustion. In addition, IFNγ induces apoptosis in FoB 
cells and is crucial for the disappearance of the FoB compartment 
[61]. Finally, B cell lymphopoiesis in the bone marrow is reduced 
under influence of the ongoing inflammatory reaction, preventing 
replenishment of mature splenic B cell subsets [62]. Coinciding with 
B cell disappearance, the induction of a protective memory response 
is inhibited [52,45] and vaccination experiments against unrelated 
pathogens show that trypanosomes destroy previously induced 
vaccine-induced memory against unrelated pathogens [45,63]. Curative 
treatment with diminazene aceturate or suramin effectively restores B 
cell lymphopoiesis and leads to the repopulation of B cells in the spleen, 
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however it does not re-establish the lost memory B cell compartment 
[64]. 

Although polyclonal B cell activation is also a characteristic of 
trypanosome infections in humans and cattle [19,65-68], it is not known 
whether destruction of B cell compartment occurs in these natural 
hosts. In light of these results, Lejon et al. (2014), conducted a field trial 
on T. b. gambiense infected individuals. In this study, immunological 
memory was assessed by measuring anti-measles antibodies of 
vaccinated subjects before and after anti-trypanosomosis treatment. 
Anti-measles antibodies were significantly lower in HAT patients 
compared to controls, and although they remained lower after treatment, 
the levels were above the cut off value assumed by the manufacturer 
to provide protection. These results are promising; however, it must be 
kept in mind that antibody quantification is a sub-optimal tool for the 
investigation of immunological memory as polyclonal B cell activation 
can replace the measles-specific antibodies by low-affinity cross-
reactive antibodies. Hence a functional characterization is necessary to 
determine if the antibodies maintain their protective capacity. Further 
investigation into a functional antibody assay should confirm these 
results. In addition, B cell memory destruction needs to be investigated 
in T. b. rhodesiense infections, as these are more virulent and elicit more 
inflammation and pathology.

It seems quite unlikely that B cell destruction by itself is beneficial 
to the host as control of parasitemia (and consequent survival) relies 
partly on induction of parasite-specific antibodies [17,28]. Could 
it be that destruction of the B cell compartment is an unwanted side 
effect of the strong pro-inflammatory response generated during the 
acute infection phase? And what would be different about African 
trypanosome infections compared to other infections causing acute 
inflammation that do not elicit B cell destruction? 

In addition to antigenic variation, destruction of the B cell 
compartment could be an evasion strategy by which trypanosomes 
ensure infection chronicity and transmission potential. This could 
give the parasite an opportunity to re-use previously expressed VSGs 
during the chronic infection phase. A recent study by Hall et al. (2014) 
revealed that during the chronic infection phase, the parasite recycles 
previously expressed VSG genes to synthesize new mosaic VSGs [11]. 
If these mosaic genes would contain previously expressed epitopes, the 
parasite would benefit from B cell memory loss. However, the authors 
suggest that these mosaic genes are antigenically distinct, implying that 
there is no need for B cell memory destruction. Again the question 
arises whether B cell destruction could merely be an unintended side 
effect of the strong, IFNγ-driven pro-inflammatory environment 
coinciding with peak parasitemia, rather than an additional evasion 
strategy developed by the parasite. In this respect it is interesting to 
mention that in contrast to T. b. brucei infection, murine Plasmodium 
chabaudi infection leads to a temporary disappearance of splenic B 
cells. Splenic B cells disappear during the initial strong Th1 response, 
characterized by high levels of IFNγ, and reestablish themselves after 
the infection switches to a Th2 inflammatory environment [60]. It is 
possible that B cell destruction is an artifact of more virulent murine T. 
b. brucei infection models, and that this does not accurately reflect host-
pathogen interactions. B cell destruction during low virulent T. brucei 
infections should be investigated.

Conclusion
African trypanosomes elicit a strong pro-inflammatory reaction 

early in the infection. While this inflammation aids in keeping the 
parasite population under control, it is also responsible for the induction 

Figure 1: Overview of the host pathogen interactions during African 
trypanosomosis in mice, cattle and humans. Three phenomenon’s are 
depicted: acute pro-inflammatory response, Anemia and Destruction of the B 
cell compartment. When the phenomenon has been described for a specific 
host the symbol is depicted. If not, the symbol is greyed out. Advantages and 
disadvantages for parasite and host are listed in a table accompanying each 
phenomenon. The tipping of the scale indicates whether the phenomenon is 
in favor of host or parasite. If the scale is balanced, the characteristic favors 
both host and parasite.

of inflammation-associated pathologies. Acute anemia and possibly B 
cell destruction are direct consequences of the over-activated state of 
the immune system. These pathologies weaken the host but ensure 
parasite survival by enhancing infection chronicity and transmission 
potential (Figure 1). 
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