

Immunochemical Approaches in Cancer Biomarker Detection

Sarah Mitchell*

Department of Oncology, University of Melbourne, Melbourne, Australia

DESCRIPTION

Cancer remains one of the leading causes of death worldwide and early detection plays a critical role in improving survival rates. Immunochemistry has become an indispensable tool in the detection of cancer biomarkers, offering highly sensitive and specific methods for identifying the presence of cancer-related proteins, genetic markers and tumor-associated antigens. These immunochemical approaches enable clinicians to detect cancer at its earliest stages, allowing for more effective and personalized treatment strategies. One of the most widely used immunochemical techniques for cancer biomarker detection is the Enzyme-Linked Immunosorbent Assay (ELISA). ELISA enables the quantification of specific proteins or antigens that are present in a patient's blood or tissue samples. For cancer detection, this method can be used to measure the levels of circulating tumor markers substances produced by cancer cells or in response to cancer. These markers can provide critical information about the type of cancer, its progression and the effectiveness of ongoing treatment. For example, Prostate-Specific Antigen (PSA) is a well-known biomarker used in the diagnosis of prostate cancer. Elevated PSA levels in the blood can indicate the presence of prostate cancer or other prostate-related conditions. While PSA testing has been a cornerstone of prostate cancer screening, it is not without limitations, as elevated levels can also be seen in non-cancerous conditions. However, immunochemical techniques continue to evolve, with advancements focused on increasing the specificity of assays to better distinguish between benign conditions and malignancy.

Another key biomarker is the Carcinoembryonic Antigen (CEA), which is used to detect various cancers, including colorectal, lung and pancreatic cancers. CEA is often used in conjunction with other diagnostic tools to monitor disease progression and to assess the effectiveness of treatment. Immunochemical assays, such as ELISA and lateral flow assays, have enabled the rapid and accurate detection of CEA levels, allowing for better management of cancer patients. Immunohistochemistry (IHC) is another powerful immunochemical method widely used in cancer diagnostics. IHC involves the application of antibodies to

tissue samples, where they bind to specific antigens expressed by cancer cells. The resulting antibody-antigen interaction is visualized under a microscope, allowing pathologists to determine the presence of cancer cells and assess tumor characteristics. IHC plays an Important role in identifying specific subtypes of cancer, such as distinguishing between different types of breast cancer based on the expression of receptors like estrogen and progesterone receptors. This information is vital for determining the most appropriate treatment, as certain therapies, such as hormone therapy, are only effective in cancers that express these receptors.

Immunochemical techniques are also essential in detecting genetic mutations associated with cancer. The use of immunochemistry in cancer diagnosis and treatment extends beyond traditional biomarkers. Researchers are increasingly focusing on the identification of novel biomarkers that could provide insights into cancer progression, metastasis and response to treatment. These emerging biomarkers include exosomal proteins, micro Ribonucleic Acid (RNAs) and cancer-associated antigens that are released into the bloodstream by tumor cells. Immunochemical techniques, including highly sensitive assays like multiplex ELISA and mass spectrometry-based assays, are being used to explore these new biomarkers, which could lead to the development of non-invasive blood tests for cancer detection. The integration of immunochemistry with advanced technologies, such as Artificial Intelligence (AI) and machine learning, holds great potential for the future of cancer diagnostics. AI algorithms can analyze large datasets generated by immunochemical tests, helping to identify patterns and correlations that may not be apparent to the human eye. This could lead to the development of more accurate and efficient diagnostic tools, allowing for earlier detection of cancer and more precise monitoring of treatment outcomes. Immunochemistry is also playing an Important role in the field of liquid biopsy. Traditional cancer biopsies, which involve the collection of tissue samples, can be invasive and uncomfortable for patients. Liquid biopsy, on the other hand, involves analyzing blood or other bodily fluids for cancer biomarkers. Immunochemical assays are used to detect tumor-specific

Correspondence to: Sarah Mitchell, Department of Oncology, University of Melbourne, Melbourne, Australia, E-mail: s.mitchell@unimelb.edu.au

Received: 25-Nov-2025, Manuscript No. BABCR-26-30845; **Editor assigned:** 28-Nov-2025, Pre QC No. BABCR-26-30845 (PQ); **Reviewed:** 12-Dec-2025, QC No. BABCR-26-30845; **Revised:** 19-Dec-2025, Manuscript No. BABCR-26-30845 (R); **Published:** 26-Dec-2025, DOI: 10.35248/2161-1009.25.14.603

Citation: Mitchell S (2025). Immunochemical Approaches in Cancer Biomarker Detection. Biochem Anal Biochem. 14:603.

Copyright: © 2025 Mitchell S. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

proteins, genetic mutations and Circulating Tumor Deoxyribonucleic Acid (ctDNA) in blood samples. Liquid biopsy has the potential to provide a non-invasive alternative to traditional biopsies, enabling real-time monitoring of tumor progression and the detection of metastasis.

CONCLUSION

In summary, immunochemistry plays an essential role in the detection and management of cancer. From traditional

biomarkers like PSA and CEA to emerging markers and liquid biopsy technologies, immunochemical approaches provide valuable insights into cancer diagnosis, progression and treatment. As the field continues to evolve, the integration of immunochemistry with other diagnostic tools and technologies will further enhance the ability to detect and treat cancer, ultimately improving patient survival and quality of life.