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The relative contribution and efficacy of IFN-γ-inducible 
antimicrobial effectors varies depending on the intracellular niche 
occupied by the pathogen, the host species that is infected as well as 
the pathogen and strain-specific evasion mechanisms. In the case 
of T. gondii, its unique intracellular niche makes it impervious to 
antimicrobial mediators that operate strictly within the confines of a 
phagosome or on free microbes in the cytosol. However, host species 
have evolved IFN-γ-inducible mechanisms that are capable of acting 
on T. gondii within its segregated PV [11]. T. gondii has countered this, 
in part, by evolving a yet undefined mechanism to disrupt chromatin 
remodeling of STAT1 regulated promoters in infected cells; resulting 
in suppression of greater than 60% of IFN-γ induced transcripts [12-
14]. Consequently, anti-T. gondii effector activity can differ depending 
on whether host cells are activated prior versus after parasite invasion. 
However, parasite downregulation of inducible nitric oxide synthase 
(iNOS) is not necessarily sufficient to avoid growth arrest by the 
residual nitric oxide (NO) produced even in infected cells and this 
may hold true for other antimicrobial effectors as well [15]. IFN-
γ-inducible indoleamine 2, 3-dioxygenases (IDOs) mediate anti-T. 
gondii activity by restricting intracellular access to tryptophan; T. 
gondii is a tryptophan auxotroph [16,17]. IFN-γ-induced gasses such 
as reactive nitrogen (RNS) and oxygen species (ROS) are ancient and 
relatively conserved anti-microbial agents that can disrupt function of 
multiple processes in a microbe simultaneously and have the added 
benefits of acting synergistically and of being highly diffusible to 
enable contact with pathogens in diverse intracellular niches. In the 
case of T. gondii, inducible ROS generated predominantly by NADPH 
oxidase are capable of anti-T. gondii activity [18-20] during infection 
in both humans and mice. Similarly, nitric oxide generated by iNOS 
suppresses parasite replication independent of parasite genotype [21-
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Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes the disease toxoplasmosis. This highly successful 

parasite is able to infect virtually any warm blooded vertebrate host and host cell even though the definitive host is 
felidae. Here, we focus on IFN-γ-inducible cell autonomous immunity to T. gondii and mechanisms which the parasite 
has evolved to evade intracellular antimicrobial defenses. These are discussed in the context of co-evolution of T. 
gondii with its murine intermediate host.
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The obligate intracellular pathogen Toxoplasma gondii is a 
highly successful parasite that can infect virtually any warm blooded 
animal even though its sexual cycle is restricted to felidae. Rodents, 
however, are a significant intermediate host and the parasite has 
evolved mechanisms to manipulate the behavior of T. gondii infected 
rodents to increase successful predation by felidae [1-4]. In addition 
to infecting a wide array of host species, T. gondii also infects virtually 
any vertebrate host cell as it uses a parasite actin-myosin motor to 
invade cells circumventing the need for phagocytosis [5,6]. Upon cell 
invasion, T. gondii forms its own unique intracellular compartment, 
or Parasitophorous Vacuole (PV), where it replicates, eventually lysing 
its host cell to egress and invade adjacent cells to resume its lytic cycle. 
Because T. gondii actively invades host cells forming a nascent PV in 
the process, it avoids even transient residence in a phagosome [7,8]. 
Likewise, the PV remains largely segregated from conventional host 
cell endocytic and exocytic trafficking pathways [9,10]. 

23]. However, iNOS-/- mice retain the capacity to control acute, but 
not chronic, T. gondii infection although overall parasite numbers 
are increased compared to infected wild type mice [24-26]. This 
may, in part, be a consequence of T. gondii having evolved numerous 
mechanisms to withstand NO/RNS [27,28]. However, it more likely 
reflects the dominant and essential role of IFN-γ-induced immunity 
related p47 GTPases (IRGs) against Type II and III genotypes of 
the parasite in mice [29-33]. IRGs are sequentially and coordinately 
recruited (loaded) onto the PV rapidly following parasite invasion 
and break it down allowing destruction of the parasites within [34,35]. 
In contrast, the IRG family is largely absent in humans and do not 
contribute to the human immune response against T. gondii [36]. IFN-
γ-inducible p65 Guanylate-Binding Proteins (GBPs) also contribute to 
anti-T. gondii activity at least in part by aiding the recruitment of IRGs 
to the PV [37,38]. GBPs unlike IRGs are well represented in humans 
and could play a role in parasite control in human infections.

Mice are important intermediate hosts for T. gondii and it is possible 
that the expanded family of IRGs in mice relative to humans may be 
an evolutionary adaptation to enable chronic versus lethal infection of 
mice with the parasite. It is evident that T. gondii-genotype-dependent 
mechanisms have evolved specifically to counter the action of IRGs. 
Type I genotypes of T. gondii share a phenotype of acute virulence in 
mice defined as an LD100 of a single parasite [39]. Two secreted parasite 
rhoptry proteins, ROP18 and ROP5, prevent loading of IRGs to PVs 
abolishing the effectiveness of IRGs against T. gondii [40-46]. Another 
parasite genotype-dependent adaptation, ROP16 from Type I and III 
strains, maintains constitutive activation of STAT 6 (IL-4 pathway) 
and STAT3 (IL-6 pathway) in macrophages dampening inflammatory 
cytokine production and possibly skewing infected macrophages to 
alternative (arginase) versus classical (iNOS) activation and a generally 
less potent antimicrobial state [47-49]. In contrast, the dense granule 
protein GRA15 from Type II strain parasites may contribute to classical 
activation of infected macrophages as it activates NFκB resulting in 
increased IL-12 production [50]. Rats as well as peritoneal macrophages 
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