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Abstract
Hepatitis C Virus (HCV) is a leading cause of cirrhosis and liver cancer worldwide. The replication and viral 

polyprotein maturation of HCV crucially depends on the cleavage of the polyprotein precursor into 10 viral proteins. 
The NS3-4A serine protease cleaves the nonstructural region of the polyprotein at four out of five junctions, thus is 
a promising target for the development of antiviral inhibitors. There are many inhibitors of HCV NS3/4A protease 
in the clinical trial and improvement indicating significant reduction in the viral infection rate. However, most PIs 
develop resistance associated variants while treatment and are restricted to one or two HCV genotypes. The second 
generation PI, MK-5172, is the only exception, which potently inhibits most variants associated with resistance to first 
generation PIs and is pan-genotypic. In this study, we investigated the potent lead compound(s) based on similarity 
search using the most potent proved protease inhibitor, MK-5172. We have performed virtual screening techniques 
using PubChem database available in NCBI to identify lead like molecules. The database has yielded 32 hits for 95% 
similarity search and the pharmacokinetic analysis (ADME) was performed for screened compounds. This structure 
based drug design identified three lead compounds that can work better against NS3/4A protease.
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Introduction
Hepatitis C virus (HCV) infects an estimated 200 million people 

worldwide. About 3% of the world’s population is chronically infected 
with HCV and 3-4 million people are newly infected each year [1], often 
leading to cirrhosis, hepatic failure, and hepatocellular carcinoma. 
Hepatitis C virus (HCV) is an enveloped RNA virus which belongs to 
the Flaviviridae family and is the unique member of the Hepaci virus 
genus with at least 6 genotypes and numerous subtypes [2,3]. Efficient 
vaccine against HCV does not exist and the only available standard 
therapy is a combination of pegylated interferon- α (IFN-Peg) and 
ribavirin, efficient in only 50% of patients chronically infected [4]. 
Though, IFN α/Ribavirin helps in controlling the viral outbreak inside 
hosts, these are indirect antivirals and do not target a specific HCV 
protein or RNA element. Moreover, patients undergoing interferon-
based therapies experience significant adverse effects, including flu-like 
symptoms, anemia, and depression. It is therefore of major importance 
to develop anti-virals acting directly on the viral protein. Most 
importantly, direct-acting antiviral agents (DAA) have the potential 
to improve Sustained virologic response (SVR) rates and minimize 
treatment duration. 

HCV RNA genome encodes a polyprotein precursor which 
contains structural proteins (C, E1, E2 and p7) and non-structural 
proteins (NS1, NS2, NS3, NS4A, NS4B, NS5A and NS5B). Non-
structural proteins are involved in the replication of HCV genome and 
the building up of virions. Among them, NS2 and NS3 protease are 
essential enzymes for polyprotein processing. Therefore, they are the 
potential targets for screening anti HCV compounds [5]. NS3 protease 
activated by cofactor NS4A causes the cleavage of polyprotein at four 

junctions, producing the nonstructural proteins 4A, 4B, 5A and 5B and 
is therefore complementary for the replication of virus [6,7]. Hence, the 
direct role of NS3/4A protease in viral replicate machinery is proved an 
important therapeutic target for the cure of hepatitis C [8]. The active 
site configuration of NS3 protease comprises the residues His-57, Asp-
81, and Ser-139 [9]. Many inhibitors of HCV NS3/4A protease are in 
the clinical trials and improvement; indicating significant reduction 
in the viral load of patients [10]. However, the active site for protease 
inhibitors is a long shallow groove and even a single-point mutation 
is sufficient to hinder the binding of inhibitors. Therefore, pipelines of 
compounds certainly essential to meet the drug resistance situations. 
In silico screening has proven to be useful to meet the challenges of 
antiviral drug discovery. Large virtual compound libraries are filtered 
by different computational screening methods such as docking, ligand-
based similarity searches or pharmacophore based screening. This 
approach is helpful in reducing the number of candidate molecules to 
a smaller set of promising candidates that are then tested biologically. 
Since years, computational techniques like virtual screening have 
proven to be of great use to make the drug development process faster 
and less expensive [11].

In the past decades, a lot of work in the field of drug discovery 
and optimization for antiviral has been done using computational 
techniques [12-14]. Further development in computational techniques 
will certainly aid in the identification of potential DAA. Hence, in 
the present study we identified potent lead compound (s) as DAA/PI 
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(protease inhibitors) which should have unique mechanisms of action, 
higher potency, pharmacokinetics, novel binding properties, improved 
mutant potency profile and pan-genotype activity (effective against all 
HCV genotypes (1 to 7)); with the help of virtual screening techniques 
considering the existing most efficient drug in the pipeline as the 
reference compound.

Methodology 
Preparation of data set

HCV NS3/4A protease structures were obtained from Protein Data 
Bank [15]. Currently, RCSB Protein Data Bank (PDB) is presented 
with about 108 structures of NS3-4A protease of HCV both in complex 
and free forms which provide a valuable source for the development 
of novel and potential drug against HCV. The native and mutant 
(A156T) structures of NS3-4A protease were taken from RCSB protein 
data bank (PDB) [16]. The corresponding PDB codes are 2P59 and 
3SUG respectively. MK-5172 was used as the protease inhibitor for the 
ligand-based virtual screening of lead compounds in our investigation. 
The SMILES (Simplified Molecular Input Line Entry System) strings of 
the drug and lead compounds such as MK-5172, CID 58428446, CID 
71276250 and CID 71276290 were collected from PubChem database 
and submitted to CORINA in order to generate 3D structures [17,18]. 
The three-dimensional structure of target proteins (2P59 and 3SUG) 
and lead compounds were energy-minimized using GROMACS 
package 4.5.3 [19] adopting the GROMOS43a1 force field parameters 
before performing the computational analysis. 

Virtual Screening

Virtual Screening is an important tool in computer-assisted drug 
discovery and requires prior biological information to predict active 
compounds. It is the computational cognate of biological screening 
and is popularly used for lead identification in pharmaceutical research 
[20]. VP reduces the massive virtual chemical space of small organic 
molecules, to screen against a specific target protein, to a manageable 
set of promising compounds that exhibit the highest chance to be a 
lead compound [21]. The PubChem database (http://www.ncbi.nlm.
nih.gov/pccompound) was used for searching similarity based lead 
compounds by employing the MK-5172 as query [22]. MK-5172 is a 
P2-P4 macrocyclic competitive inhibitor of NS3/4A protease with a 
broad HCV genotypic activity high mutant potency profile. It exhibits 
excellent selectivity over other serine proteases and shows improved 
inhibitory potency. Its molecular formula is C29H38N4O7 with a 
molecular weight of 554.63 and a density of 1.33. Structural likeness 
increases the chance to share a common bioactive profile so ligand-
based similarity methods are preferred. Selecting compounds similar 
to known drugs increases the possibility of choosing a potential lead 
[21]. Based on a structural similarity search among small molecules, 
it is possible to retrieve compounds containing identical substructures 
that share affinity to the same receptors [23].The number of molecules 
found in the database after 95% similarity search is around 32 
compounds. The candidate compounds were further screened using 
molecular docking studies, bioavailability and ADME analysis.

ADME and Toxicity 

Molecular properties viz, membrane permeability, polar surface 
area and bioavailability are always identified with some basic 
molecular descriptors such as logP (partition coefficient), molecular 
weight (MW), TPSA or counts of hydrogen bond acceptors and 
donors in a molecule [24]. These molecular properties were used in 
devising ‘‘rule of five’’ [25]. The rule states that most molecules with 

drug likeliness and good membrane permeability have MW ≤ 500, 
calculated Octanol–water partition coefficient, log P ≤ 5 and hydrogen 
bond donors ≤ 5, acceptors ≤ 10 [26]. Therefore, Lipinski’s Rule of Five 
was used to test the bioavailability characteristics such as adsorption, 
distribution, metabolism, elimination (ADME) of the lead compounds. 
In this study, these molecular properties and bioactivity for all the 
lead compounds were estimated using MOLINSPIRATION program 
(http://www.molinspiration.com/cgi-bin/properties) [27]. Successful 
drug discovery requires high-quality lead structures which may need 
to be more drug-like than commonly accepted [28]. Toxicity and poor 
pharmacokinetics should be eliminated in the early stages of drug 
discovery. Hence, the hits were further screened using drug-likeliness, 
toxicity characteristics, and drug score. These physico-chemical 
properties were thus calculated for the filtered set of hits using the 
program OSIRIS Property Explorer (http://www.organic-chemistry.
org/prog/peo/) [29]. 

The OSIRIS program calculates the drug-likeliness based on a list 
of about 5,300 distinct substructure fragments created by 3,300 traded 
drugs as well as 15,000 commercially available chemicals yielding a 
complete list of all available fragments with associated drug-likeliness. 
The drug score combines drug-likeliness, cLogP, logS, MW, and toxicity 
risks as a total value which may be used to compute the compound’s 
drug-score and its overall potential to qualify for a drug [29].

Molecular docking

The process of docking is involved with specification of ligand 
binding site in a receptor molecule and then docking the candidate 
ligands into the specified site. The lead compounds obtained from the 
ligand-based VS analysis were used in docking calculation and binding 
energy estimation. The SMILES strings were used for constructing the 
3D-structures of all lead compounds using CORINA software. After 
docking, the compounds were ranked based on the geometric matching 
score with target proteins. The geometric matching score of MK-5172 
with the target proteins (native and mutant structures) were used as 
reference for filtering the lead compounds. The energy minimized 
structures of NS3-4A protein were used as a template molecule to 
dock the screened inhibitors. In this study, rigid docking analysis was 
performed by means of Patchdock program (http://bioinfo3d.cs.tau.
ac.il/PatchDock/) [30].

It is geometry-based molecular docking algorithm defined on 
shape-complementary principles. The PatchDock algorithm divides the 
Connolly dot surface representation [31] of the molecules into concave, 
convex, and flat patches. Then, complementary patches are matched to 
generate candidate transformations. Each candidate transformation is 
further evaluated by a scoring function that considers both geometric 
fit and atomic desolvation energy [32]. 

Finally, root mean square deviation (RMSD) clustering is applied 
to the candidate solutions to discard redundant solutions. The 
input parameters for the docking are the PDB coordinate file of the 
protein and ligand molecule. This algorithm has three major stages: 
(i) molecular shape representation, (ii) surface patch matching (iii) 
filtering and scoring. The refinement and rescoring of the docking 
solutions from Patch Dock was performed using Fire Dock. It consists 
of two main steps: (i) rearrangement of the interface side-chains 
and (ii) adjustment of the relative orientation of the molecules. The 
method accounts for the observation that most interface residues 
that are important in recognition and binding do not change their 
conformation significantly after complex process. It restricts side-
chain movements and thus manages to reduce the false-positive rate 
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noticeably. It is worth to mention that Fire Dock prediction results are 
comparable to current state-of-the-art refinement methods [33]. The 
service is available at http://bioinfo3d.cs.tau.ac.il/FireDock/.

Molecular dynamics simulation 

GROMACS package 4.5.3 was used to perform simulations for 
the native and mutant NS3-4A protease-MK-5172 as well for CID 
71276250 molecule [34]. Gromos 43a1 force field was implemented 
with GROMACS package 4.5.3. With the help of periodic boundary 
conditions and the SPC water model, the protein was solvated in cubic 
0.9 nm [35]. PRODRG server was used to generate topology of the 
ligand. This server uses GROMOS force field for generating topology 
file and assigning atom types [36]. Seven Chlorine (7 CL- ions) counter 
ions were added to neutralize the total charge of the system. 1000 
steps of steepest descent energy minimization were carried out for the 
proteins. After energy minimization step, the system was equilibrated 
at constant temperature and pressure. The system was equilibrated at 
constant temperature of 300 K and at the constant pressure of 1 atm. 
Using an atom-based cutoff of 8 Å, the non-bonded list was generated. 
The long range electrostatic interactions were handled by particle-
mesh Ewald algorithm [37] whereas constrains bond lengths at their 
equilibrium values were handled by SHAKE algorithm handled long 
range electrostatic interactions and constrain bond lengths at their 
equilibrium values respectively [38]. The total simulation time was set 
to 1000 ps with integration time step of 2 fs. Trajectories were stored 
in traj.trr file and structural analysis was done at every picoseconds. 
Root mean square deviation (RMSD) was analyzed through Gromacs 
utilities g_rms.

Results and Discussion
We obtained the crystal structure of NS3-4A protease (2P59) 

and its mutant (3SUG) from PDB database. It is believed that similar 
structure compounds may have similar function. 

Most importantly, the importance of virtual screening is highlighted 
number of times in the recent literatures [39-42]. Therefore, 95% 
similarity was applied to filter the candidate compounds. In silico 
ligand-based Virtual Screening result indicates that 32 compounds 
were identified for NS3-4A protease inhibition, similar to the currently 
active drug molecule, MK-5172. Many drug candidates fail in the 
clinical trials; reasons are unrelated in the potency against the intended 
drug target. Bioavailability, pharmacokinetics and toxicity issues are 
blamed for more than half of all failure in the clinical trials of HCV 
drugs. Therefore, it is essential to evaluate the oral bioavailability, 
pharmacokinetics and toxicity of small molecules.

Bioavailability analysis

The molecular properties and bioactivity for the candidate 
compounds was anticipated using Molinspiration program. The 
LogKow program [43] estimates the log octanol/water partition 
coefficient (logP) of organic chemicals and drugs by an atom/
fragment contribution method [44]. Molecular polar surface area 
(TPSA) is calculated based on the methodology as a sum of fragment 
contributions. PSA has been shown to be a very good descriptor 
characterizing drug absorption, including intestinal absorption, 
blood–brain barrier penetration and bioavailability. The two important 
predictors of oral bioavailability of drug molecules are Log P value 
and PSA values [45]. Thus, we calculated log P and PSA values along 
with other physiochemical properties such as molecular mass, the 
number of hydrogen bond acceptors, and the number of hydrogen 
bond donors for the all the 32 candidate compounds obtained from 

ligand-based VS. It is believed that lesser the nviolations (number of 
violations of Lipinski’s Rule of Five) better is the drug molecule. The 
results showed that only 3 molecules (CID 58428446, CID 71276250 
and CID71276290) had minimum 1violations, though MK-5172 shows 
2 violations; which confirms that these molecules act as better drug 
molecules against NS3-4A protease (Table1).

Toxicity and physicochemical properties

The toxicity and drug properties of molecules were predicted using 
OSIRIS Property Explorer. It analyzes the drug likeness and thus the 
pharmacokinetic property by considering parameters like toxicity 
risks, PSA, clogP and solubility of the candidate compounds. clogP is a 
well-established measure of the compound’s hydrophilic and therefore 
low logP/high hydrophilic values may indicate good absorption or 
permeation properties. It has been shown for compounds exhibiting 
reasonable probability of being well absorbed; their logP value must 
not be greater than 5.0. Drug solubility is an important factor that 
affects the movement of a drug from the site of administration into the 
blood. It is known that insufficient solubility of drug can lead to poor 
absorption [25]. The estimated log S value is a unit stripped logarithm 
(base ten) of a compound’s solubility measured in mol/liter. Table 2 
shows properties of all the candidate compounds. It is clear from the 
table that three compounds such as (CID 58428446, CID 71276250 
and CID71276290) may fulfill the pharmacokinetics and could be 
considered as lead molecules for HCV NS3 protease inhibition. The 
toxicity risk predictor locates fragments within a molecule, which 
indicate a potential toxicity risk. Toxicity risk alerts are an indication 
that the drawn structure may be harmful concerning the risk category 
specified. From the data evaluated in Table 2, indicates that all the 
compounds including the standard MK-5172 possess some irritant 
property excluding only the compound 71276250.

Drug-Likeliness and Drug-Score

Drug-likeness is an important parameter because drug-like 
molecules exhibit favorable absorption, distribution, metabolism, 
excretion, toxicological (ADMET) parameters. Currently, there 
are many approaches to assess a compound drug-likeness based 
on topological descriptors, fingerprints of molecular drug-likeness 
structure keys or other properties such as clog P and MW. In this 
study, Osiris program [29] was used for calculating the fragment based 
drug-likeness of the lead compounds and comparing them with MK-
5172. The drug score combines drug-likeliness, miLogP, log S, MW, 
and toxicity risks in one convenient value than may be used to judge 
the compound’s overall potential to qualify for a drug. It is interesting 
to note that CID 71276250 have significantly higher drug-score value 
(0.27), compared to MK-5172 (0.13) and other lead compounds. 
Furthermore, almost all the compounds including MK-5172 shows 
irritant property with the only exception of this compound showing 
no toxicity risks at all. This result indicates that CID 71276250 has 
distinct property in comparison with other lead molecules considered 
in our study. The toxicity, drug-likeness, and drug-score results for the 
compound CID 71276250 are illustrated in Figure 1.

Molecular docking analysis

 Protein-ligand docking was performed to gain an insight into 
the binding affinity of lead compounds to the target protein. In the 
docking study, we employed Patchdock algorithm along with Fire 
Dock refinement. It is believed that this combined approach of docking 
analysis is certainly helpful for the elimination of false-positive in our 
prediction. The docking result is shown in Figure 2. It is clear from the 
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figure that the compound CID 71276250 possesses the binding energy 
of -41.36 and -42.37 kcal/mol for native and mutant NS3/4A protease 
respectively. In particular, the binding energy of this compound 
is considerable to the binding energy of MK-5172, indicating the 
effectiveness of this compound. The docked complex of native and 
mutant NS3-4A protease with each: MK-5172, CID 58428446, CID 
71276250 and CID 71276290 and their intermolecular interactions are 
shown in Figures 3-6. 

Molecular dynamics simulation 

RMSD details were analyzed using GROMACS package 4.5.3. 
RMSD is the measure of the deviation of the mutant structure from 
their native structure. RMSD analysis can give an idea of how much 
the three-dimensional structure has deviated over time. Figure 7 
shows the stable binding of CID 71276250 with respect to MK-5172. 
MK-5172 has deviated more than of CID 71276250 molecule. Native 
MK-5172 acquired ~0.20 nm at 200 ps during the simulations, while 

CID miLogP TPSA natoms MW nON nOHNH nviolations nrotb volume
MK-5172 (46930991) 4.747 140.192 40 554.644 11 2 2 3 505.606
59178018 4.747 140.192 40 554.644 11 2 2 3 505.606
71278306 4.747 140.192 40 554.644 11 2 2 3 505.606
71307589 4.747 140.192 40 554.644 11 2 2 3 505.606
67304193 5.356 140.192 41 568.671 11 2 3 3 522.193
67304412 5.456 140.192 41 566.655 11 2 3 3 516.006
71276289 6.614 140.192 41 570.687 11 2 3 14 532.983
68491802 4.747 140.192 40 552.628 11 2 2 3 499.42
68491803 4.747 140.192 40 552.628 11 2 2 3 499.42
59178019 6.82 129.198 41 568.671 11 1 3 4 523.134
67304190 6.82 129.198 41 568.671 11 1 3 4 523.134
71276290 1.259 140.192 36 498.536 11 2 1 2 439.394
71278250 7.23 129.198 42 584.714 11 1 3 15 550.511
72535811 6.82 129.198 41 568.671 11 1 3 4 523.134
71278254 5.452 175.731 47 658.749 14 2 3 16 602.545
71278255 6.462 175.731 49 686.803 14 2 3 18 636.149
71278248 5.182 158.215 42 586.686 12 3 3 16 541.612
68236439 5.044 140.192 40 556.66 11 2 3 13 516.181
59178016 6.92 129.198 41 566.655 11 1 3 4 516.947
67304410 6.92 129.198 41 566.655 11 1 3 4 516.947
71276250 4.672 116.889 38 526.678 9 2 1 13 504.868
72535809 6.92 129.198 41 566.655 11 1 3 4 516.947
59178020 7.828 129.198 43 594.709 11 1 3 15 555.835
67304070 7.828 129.198 43 594.709 11 1 3 15 555.835
72535812 7.828 129.198 43 594.709 11 1 3 15 555.835
71276269 6.129 140.192 41 566.655 11 2 3 11 521.523
68236192 7.117 129.198 41 570.687 11 1 3 14 533.709
71529660 5.978 175.731 49 682.771 14 2 3 15 624.689
71276247 4.698 158.215 42 582.654 12 3 2 13 530.153
71532366 4.698 158.215 42 582.654 12 3 2 13 530.153
68236191 7.217 129.198 41 568.671 11 1 3 13 527.522
58428446 3.521 128.165 40 553.656 10 1 1 3 510.006

Table 1: Bioavailability of lead compounds-molinspiration data.

 

Figure 1: Osiris Property Explorer showing Drug-likeliness properties of CID 
71276250.

Figure 2: Bar-graph representation of global energy for NS3-4A protease (native 
and mutant) docked with MK-5172 and lead compounds CID: 58428446, CID: 
71276250, CID: 71276290. 
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mutant MK-5172 structure acquired ~0.17 nm of backbone RMSD 
at 200 ps. Between a period of 400 and 800 ps, a mutant MK-5172 
is able to maintain ~0.18 nm of backbone RMSD, while the native 
MK-5172 showed frequent changes (~0.23 to ~0.25 nm) in backbone 
RMSD. Native MK-5172 gained RMSD dominance over mutant and 
attained RMSD of ~0.24 nm at 1000 ps and the mutant MK-5172 
achieved ~0.18 nm at 1000 ps. Native CID 71276250 acquired ~0.23 
nm between a period of 400-800 ps while the mutant CID 71276250 
acquired between ~0.17 to ~0.20 nm. At 1000 ps, native CID 71276250 
attained RMSD of ~0.20 nm whereas mutant CID 71276250 attained 
RMSD of ~0.20 nm. This data suggested that MK-5172 had undergone 
more conformational changes throughout the simulation than the CID 
71276250. Thus, indicating that MK-5172 has deviated more than the 

CID 71276250. This shows that CID 71276250 is more stable than MK-
5172. Further research still needs to be done to analyze their SAR. We 
envision that this preliminary study could lead to the development of 
potent, pan-genotypic and improved drugs against Hepatitis C virus.

Conclusion
Although there is no specific vaccine for HCV till now and the 

available standard therapy of Peg-IFN/Ribavirin is associated with 
many side effects (including depression, headache, fever, flu like 
symptoms, hemolytic anemia), there has been substantial progress in 
the research work and clinical improvement of novel antiviral drugs. 
NS3-4A protease is recognized as an important target because of its 
central role in the viral replication and survival inside patients and in 
confounding the innate immune response to viral infection. Developing 
inhibitors of the protease that can be orally available, have reduced 
toxicity and side effects, improved SVR, high mutant potency, pan-
genotypic and available at low cost is the most challenging aspect. Study 
shows that currently, MK-5172 is the drug that satisfies the requisites 
to most extent and also has reduced cross-resistance evidences. Our 
research based on structure based drug design and similarity search, 
identified three lead compounds. Thus, we conclude that the inhibitors 
computationally studied here may be potent drug candidates and their 
potency may be increased against HCV NS3/4A protease with relatively 
simple structural changes. Further investigation of this molecule using 
experimental approaches would be an interesting future direction.

  
(A)                  (B) 

Figure 3: Complex structure of native NS3 protease with MK-5172 A) LigPlus 
view B) PyMol view.

  
   (A)               (B) 

Figure 4: Complex structure of NS3 protease mutant (A156T) with MK-5172 A) 
LigPlus view B) PyMol view.

  
        (A)               (B) 

Figure 5: Complex structure of native NS3 protease with lead-compound CID: 
71276250 A) LigPlus view   B) PyMol view.

  
          (A)               (B) 

Figure 6: Complex structure of mutant NS3 protease (A156T) with lead-
compound CID: 71276250 A) LigPlus view B) PyMol view.

 

Figure 7: Root mean square deviations (RMSD) correspond to the native 
(black), mutant (red) type NS3-4A protease-MK5172 complex, native (green) 
and mutant type NS3-4A protease- CID 71276250 (blue) complex along the 
MD simulation at 300 K.
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