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Introduction 
Physical phenomena are often governed by partial differential 

equations, which need an essential set of data to solve them. In linear 
elasticity, these data are: the geometry of the solid, the mechanical 
properties of the materials and the boundary conditions. However, 
in many industrial applications, some of these data are unknown 
and have to be identified. This leads to an inverse problem whose 
resolution requires over specified measured data. In this paper we 
focus on problems of boundary condition identification in linear 
elasticity. In this case, data measured on part of the easily accessible 
border are often available. However, contrary to the direct problem, 
two kinds of boundary conditions (e.g. displacements and tractions) 
are imposed on the same part of the boundary while no information 
exists on the remaining part of it. Hence, data completion consists in 
reconstructing the boundary conditions for the whole boundary of a 
domain by using the partially over specified measurements. This is the 
well-known Cauchy problem, which is ill- posed. The ill-posedness of 
inverse problems may concern the existence and/or the uniqueness 
of the solution, but their most critical feature is their instability: the 
solution, whenever a problem has one, is not continuous with respect 
to the data, i. e. small measurement errors in the data may dramatically 
amplify the errors in the solution. This is ill-posedness in the Hadamard 
sense [1]. The Cauchy problem pertains to this kind of inverse problem. 
Therefore suitable regularizing algorithms that are exempt from this 
ill-posedness phenomenon are required in order to solve the inverse 
problem correctly.

For inverse problems in elasticity, we refer to Bonnet et al. overview 
paper [2] and the huge amount of references therein. The Cauchy 
problem in linear elasticity was first studied by Yeih et al. [3]. In this 
paper, the existence and uniqueness of the solution are analyzed as 
well as the continuity of the solution with respect to the data. Other 
authors have proposed an alternative regularization procedure, namely 
the indirect fictitious boundary method, which is based on the simple 
or the double layer potential theory. The numerical implementation 
of the aforementioned method has been carried out by Koya et al. 
[4] who used the BEM and the Nystrom method for discretizing the
integrals involved. Marin et al. [5] have determined the approximate
solutions of the Cauchy problem in linear elasticity using an alternating 
iterative BEM that reduces the problem to solving a sequence of well-
posed boundary value problems. Marin et al. [6] have used singular
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Abstract
This note deals with the identification of contact pressures in two and three-dimensional elastic bodies via 

two approaches relying on domain decomposition using electrostatic measurements. These approaches consist 
in recasting the problem in terms of primal or dual Steklov Poincar´e equations. The numerical performances of 
these formulations are compared. The proposed methods are applied to some inverse problems: the first application 
deals with the identification of a Hertizian contact pressures distribution, the second deals with the identification of 
the indentation pressure of a heterogeneous solid, and the third one with the identification of boundary data at the 
interface of a bonded structure.

value decomposition to solve the same problem numerically. A related 
inverse problem which allows for interior displacement measurements 
and inter-facial crack detection has been investigated by Huang 
and Shih [7]. Weikel et al. [8] have proposed an alternating iterative 
algorithm in order to reconstruct an internal planar crack laying on an 
a priori known internal surface inside a three-dimensional elastic body 
from over determined electrostatic boundary data on the outer surface. 
Numerical experiments for the identification of internal cracks in a 
three-dimensional elastic body using the primal and dual formulations 
of the Steklov-Poincar´e equation are recently carried out and their 
numerical performances are compared [9]. A general framework 
for the different approaches (primal, dual and mixed) is presented 
presentad by Azaiez et al. [10].

In this work, the Steklov-Poincar´e method is applied to the linear 
elastic data completion problem. In section 2, the Cauchy problem is 
presented in the context of linear elasticity. In section 3 this problem is 
recast in condensed form that we will refer to as the Cauchy-Steklov-
Poincar´e problem, which leads to the Cauchy-Steklov-Poincar´e 
equation acting on the boundary of the unknowns. In section 4 we 
present the Dirichlet-to-Neumann algorithm and we show that it can be 
interpreted as a preconditioned Richardson procedure for the Cauchy-
Steklov-Poincar´e equation. The numerical procedures are presented 
in sections 3 and 5 and the results obtained by FEM discretization of 
the problems are presented in sections 7 and 8. The methods are used to 
solve applications borrowed from engineering mechanics in 2D and 3D 
frameworks: the identification of contact pressure between two elastic 
bodies, identification of the indentation pressure in a two layer solid 
and the identification of boundary data at the interface of a bonded 
structure.

The Cauchy Problem in Linear Elasticity
Let Ω denote a bounded domain in R2 or R3 with regular boundary 
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Γ=∂Ω. The whole domain is assumed to be filled with a homogeneous 
linear elastic isotropic medium. It is assumed that Γ is splitted into two 
open subsets Γc, and Γi, Γ=Γc∪Γi where Γc, Γi ≠∅ and Γc ∩ Γi=∅. In what 
follows, u(x) denotes the displacements field on Ω.

The local equilibrium equation is given by

( )( )    ,σ− = ∈Ωdiv u x f x 	         			                (1)

where σ is the stress tensor and f the volume forces. The strain tensor 
ε is given by 

1(u(x)) ( u(x) u(x) ).
2

ε = ∇ +∇ t       			                 (2)

These tensors are related by the Hooke’s constitutive law, which is

t

(u(x)) 2 (u(x)) (u(x)) I
( u(x) u(x) ) divu(x),

σ µε λ ε

µ λ

= +

= ∇ +∇ +

tr
                                      (3)

where λ and µ are the Lam´e  constants of the material and I is the 
identity tensor.

Let n(x) be the outward normal vector at Γ and t(x) be the traction 
vector at a point x ∈ Γ defined by

t(x)=σ(u(x))n(x)    x ∈ Γ.

In the well-posed direct problem formulation, the knowledge of the 
displacement on a part of the boundary and traction vectors on another 
part of the boundary enables us to determine the displacement vector 
in domain Ω. Then, the strain tensor ε can be calculated from kinematic 
relation (2) and the stress tensor is determined by constitutive law (3).

If a part of the boundary Γi is inaccessible and if it is possible to 
measure both the displacement and traction vectors on the remaining 
part of boundary Γc, this leads to the mathematical formulation of a 
direct problem expressed as follows:

-div (u(x)) = f  in 
u(x) ( )
(x) ( )

σ Ω
= Γ

=





 Γ
 



c

c

u x in
t t x in

                         		              (4)

where u  and t  are prescribed vector valued functions. This problem 
is ill-posed because of the formulation of its boundary conditions (4). 
It can be seen that boundary Γc is over specified by prescribing both 
the displacement |Γ = 

c
u u  and the traction |Γ = 

c
t t  vectors, while 

boundary Γi is underspecified since both the displacement |Γ =
c

u u
and the traction |Γ =

c
t t  are unknown and have to be determined. 

Then, this problem can be stated as follows: find (u, )t  such that a 
displacement field u(x) exists that satisfies:

( ) ( )

0 *

0 0 * *

0

0

-div (u(x)) = f  on ,
u(x) ( ) ,
(u(x))n = ( ) in ,

u(x) ( ) ,
(u(x))n = ( ) in .

( ) ( ) ( ) ( )

-div ( ) = 0 in

u ( ) ( )
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D D D
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D
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o
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= Γ
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c

i
D

on
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                       (5)

This problem, known as the Cauchy problem, is ill-posed in the 
sense that the dependence of u(x), and consequently of ( , t)u  on the 
data ( , )u t  is not continuous. Although the problem may have a unique 
solution, it is well-known that this solution is unstable with respect 
to small perturbations in the data on Γc. In this paper we propose to 
recover the lacking data by using the Steklov-Poincar´e algorithm 
introduced by Ben Belgacem et al. in the steady state thermal case in 
[11]. However, let us first introduce an operator acting on the boundary 
where data are unknown: the Steklov-Poincar´e operator which is very 
familiar in domain decomposition and recently introduced for the 
Cauchy problem of the Laplace equation by Andrieux et al.  [13] and 
by Ben Belgacem et al. [11,12].

The Cauchy-Steklov-Poincar´e equation
To keep the notational complexity to a minimum let us remove 

x from the notations. Let λ denote the unknown displacement vector 
on Γi. We consider both Dirichlet and Neumann elliptic problems 
obtained by duplicating the solution u into a couple of vectors (uN, uD). 
The Cauchy problem (5) is then split into: 

D

D

D

-div (u ) = f in 
u
u

σ

λ

Ω
= Γ
=








Γ

 c

i

u on
on

         and      

-div (u ) = f in 
(u )n

u

σ
σ

λ

Ω
= Γ








= Γ



N

N c

N i

u on
on

If the pair ( , t)u  is compatible (i.e. a vectors field exists that verifies 
(1) for which ( , t)u  are the Cauchy data on Γc), the solution of the 
Cauchy problem is recovered, i.e. u=uN=uD in Ω, if and only if

 σ(uD (λ))n=σ(uN (λ))n on Γi . 	        		                  (6)

Now for µ, a displacements vector defined on Γi, the linear parts 
of uN(µ)  and uD(µ) are denoted 0 ( ) µNu  and which 0 ( ) µDu  solve 
respectively:

0

0

0
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( )
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We consider also 
* Du  and 

* Nu  such that

*

*

*

-div (  = f in )
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By superposition, we have 
0 *

Nu ( ) ( )  µ µ= +
N Nu u  and

0 *u ( ) ( )  µ µ= +D D Du u . With this partition, condition (6) is written as

( ) ( )0 0 * *( ) ( ) ( ) ( )     .     σ λ σ λ σ σ− = − ΓiD N N D onu u u un n n n                         (7)

Using the following notations:

( ) ( )
( )

0

0

* *

( )
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( ( ) (

,

 ,

,))

 
 

  

λ σ λ

λ σ λ
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=
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n

n

n

equation (7) becomes:
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( ) ( ) ( ) .λ λ λ χ= − = ΓD N iS S S on                                                               (8)

Equation (8) is called the Steklov-Poincar´e interface equation 
and S is the Steklov- Poincar´e operator. It is familiar in the domain 
decomposition framework [14] for the direct boundary value problem. 
More precisely, things happen as if vectors uD and uN were defined on 
two different domains with common boundary Γi. In this case, the 
equation (8) expresses the Neumann transmission condition, but the 
(-) sign in S would be (+) in the domain decomposition formulation 
[14]. The (-) sign which appears in S is at the origin of the ill-posedness 
of the Cauchy problem. From the discrete point of view, the finite 
element discretization of S leads to the Schur complement matrix 
[14]. It corresponds to having all interior nodes eliminated by static 
condensation [15]. A numerical study of the Cauchy-Poisson problem, 
based on the Steklov-Poincar´e formulation is performed by Andrieux 
and Baranger [16].

We now continue with the analogy with domain decomposition 
and show how the Cauchy-Steklov-Poincar´e equation can be 
expressed, as in domain decomposition, in terms of the Dirichlet-to-
Neumann problem.

Remark

A one dimensional example [17]: To illustrate how the ill-
posedness of the Cauchy problem occurs in the Steklov-Poincare 
equation, we consider the problem of reconvering the end conditions 
(u,f) of a pre-tensioned string lying on a Winkler-type foundation, the 
end conditions at the other extremity ( , t)u being given (Figure 1). 
Denoting by F the tension of the string and by K the spring stiffness 
density of the foundation, the Cauchy problem can be written: find 
(u,f) such that there exists a vertical displacement field v verifying :

] [2v'' k v 0 on 0, (0) , '(0)− + = = = −




tL and v u v
F

where 2k =
K
F

. In this case S is a simple scalar function of k and L. It 

is easy to show that = −
shkL chkLS
chkL shkL

 which vanishes monotonically 

with respect to kL. This means that, as expected, the ill-posedness of 
the problem becomes more and stronger when the length of the string 
or stiffness of the foundation increases and when the pretension of the 
string decreases [17].

Interpretation of the steklov-Poincar´e equation: Solving the 
steklov-Poincar´e equation is equivalent to the optimality condition of 
the first order associated to the energy-like error functional introduced 
in [18]. The proof is analogous to that done by Koslov and Maz’ya [19] 
for the Cauchy-Stokes problem.

The Dirichlet-to-Neumann algorithm, also borrowed from domain 
decomposition and introduced first by Ben Fatma et al. [20] to solve 
the Cauchy-Poisson problem, can be interpreted as a Richardson 
procedure applied to the Steklov-Poincar´e equation preconditioned 

by SD. The proof is the same than that used in domain decomposition 
[14] and that used [21] for Cauchy-Helmoltz problem.

The Dirichlet-to-Neumann solver for the Cauchy 
problem 

When describing the Dirichlet-to-Neumann approach it should be 
noted that when the complete data are available on Γ, we have an over 
specied boundary value problem

-div (u) = f in ,
(u) , ,
(u) , .

σ
σ
σ








Ω
=



= Γ

= = Γ



 c

i

n t u u on
n t u u on

                

This problem can be split into two well-posed sub problems with 
different boundary conditions. For one of them (Neumann/Dirichlet) 
conditions are imposed on (Γc, Γi)  

ˆ-div (u) = f in ,
ˆ(u) , ,
û .

σ
σ




Ω
= Γ
=

 Γ
 

c

i

n t on
u on

while this is reversed for the other and (Dirichlet/Neumann) conditions 
are imposed on (Γc, Γi)

-div (u) = f in ,
u ,

(u) , .





 = Γ

u on
n t on

Solving the Cauchy system (5) is achieved when extension ( , )ut
makes û  and u  coincide so the solution is ˆu u u= =  .

Basically, the iterative method proposed for the Cauchy-Poisson 
problem and studied by Koslov et al. [20], is derived from these 
observations: starting from an arbitrary prediction of the Dirichlet 
condition (here the displacement vector u ) on Γi , we add several 
corrections by solving alternately a Dirichlet on Γc/Neumann on 
Γi   problem and a Neumann on Γc/Dirichlet on Γi problem, where at 
each iteration the appropriate boundary data are inferred from the 
solution computed in the previous step. More specifically, we construct 
a sequence of a pair of vectors (k) ( )( , ( ) k  k

N Du u  from the following 
recurrence: given (0) Du , the following systems are solved for each k ≥ 0:

(k 1)

(k 1)

(k 1) ( )

-div ( ) = f in 

( ) =t n 

.

 
 
  

σ

σ

+

+

+

Ω

Γ

=









Γ





N

N
k

iN

e

D

o

on

u
u
u u

                          and

(k 1)

(k 1)

(k 1) (k 1)

-div ( ) = f in 

( ) =u n 

( )n= .)(

 
 

  

σ

σ σ

+

+

+ +




Ω





Γ

Γ



D

D

D N

e

i

o

n on

u
u

u u

           		               (9)

The convergence of the alternating method toward the solution of 
the Cauchy problem and its stabilizing properties are established by 
Koslov et al. [20] for the steady state thermal case. In the linear elastic 
framework, no convergence result has been proved till now but the 
result of convergence established by Koslov et al. may be applied for any 
elliptic operator. When convergence is achieved, we may obtain ( , )utFigure 1: Pre-tensioned string lying on a Winkler-type foundation.
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=(σ(u)n, u) on Γi. By using straightforward computations, it can be 
established that the Dirichlet-to-Neumann scheme can be interpreted 
as a pre- conditioned Richardson procedure for the Cauchy-Steklov-
Poincar´e equation. For this purpose, the Dirichlet-to-Neumann 
algorithm is rewritten, using the previous notations, as follows: Given 
λ0, the following systems are solved for each k ≥ 0   

(k 1)

(k 1)

(k 1) (k)

-div ( ) = f in ,

( ) =u n ,

,

 
 
 

σ

λ

+

+

+

Ω

Γ






=

 Γ



N

N

N

e

i

o

on

u
u
u

                      and

(k 1)

(k 1)

(k 1) (k 1)

-div ( ) = f in ,

( )n=t n ,

( )n= ( ) .

 
 

  

σ

σ

σ σ

+

+

+ +



 Γ

Γ



Ω





D

D

D

e

N i

o

n on

u
u

u u

The last equality (k 1) (k 1)( )n= ( )  σ σ+ +

D N nu u on Γi can be written as 

0(k 1) * 0(k 1) *( )n ( ) n ( )n ( ) .    σ σσ σ+ ++ = +
D D N N

nu u u u

Since () )(k 11( )n= λσ + +
DD

kSu  and 0(k )1) (( )n= σ λ+

N
k

NSu  on Γi it follows that 
( 1) ( ) ,λ λ χ+ = +D N
k kS S  and therefore

1( 1) ( ) ( )(S ).χλ λ λ−+ = − −k k k
Ds

 We are thus left with a Richardson procedure for the Cauchy-
Steklov-Poincare equation (8) with the operator SD as a preconditioner.            

The Dual Cauchy-Steklov-Poincare equation
The Dual Steklov-Poincar´e (DSP) problem consists in introducing 

λ=(σ(u) n)|Γi as the unknown rather than u|Γi . To write the Dual Steklov-
Poincar´e equation (DSP) on Γi we use the same process which is used 
for the primal formulation. We consider again both Dirichlet and 
Neumann elliptic problems obtained by duplicating the solution u into 
a couple of vectors (uN, uD). The Cauchy problem (4) is then split into:

-div ( ) = f in 
 =u n

) n
 ,

(

σ

σ λ
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


Ω
Γ

= Γ

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D e

D i

u
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u
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on
         and      

-div ( ) = f in 
( ) n = t n 
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


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=


e

i

N
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N

u
o

u n
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o
            (10)  

The DSP equation is obtained by writing uD (λ)=uN (λ) on Γi which 
is now the necessary and sufficient condition to solve the Cauchy 
problem. By splitting (uD, uN ) in linear parts 

0 0, )(   NDu u and remaining 
parts * *, )(   NDu u , the relation above leads to

P (λ)=P D (λ) − P N (λ)=ψ on Γi                 		                 (11)

 With 0 0
DP ( ) ( ),P ( ) ( ),  λ λ λ λ= =ND Nu u and * *  ψ = −N Du u . We call the operator 

P Dual Steklov-Poincare operator sometimes called Poincare e-Steklov 
operator by the domain decomposition community. It is clearly equal 
to 1 1− −−

D NS S .

Remark

When implementing this approach, one has to keep in mind that 
the solution of the second PDE system in (10) is defined up to a rigid 
body motion. In order to relieve this problem, one can devote a well-
chosen part of Γc to set the Dirichlet boundary condition 

u . This 
approach does not alter the generality of the work presented.

Algorithmic Strategy
The approximation of the problems 8 and 11 leads to the ill-

conditioned linear systems: Shλh=χh for the SPP algorithm and Dhµh=Ψh 
for the SPD one. Sh and Dh are the discrete Schur complement matrices. 
These linear systems are ill-posed since they are inverse problems. The 
vectors λh and µh are respectively the discretized unknown displacement 
and stress on Γi. The Schur complement is too expensive to compute 
and ill-conditioned, an iterative procedure is henceforth in order. We 
use the GMRes algorithm, which is a popular iterative method for 
the solution of large linear systems. When starting vector λ0 is zero, 
it generates a sequence of iterates λ1, λ2, ... such that λk is in the Krylov 
subspaces Km (Sh , r0)=span{r0, ..., Sm−1r0}, where r0=χh -Sh λ0. Applying 
a Krylov method to Shλh=χh has been shown to have a regularizing 
effect [22]. In fact the Krylov subspace Km gives an approximation of 
the subspace generated by the m eigenvectors associated to the largest 
eigenvalues of Sh [22], thus GMRes iterate λk can be considered as an 
approximation of the truncated singular value decomposition solution 
[23].

The advantage of using the GMRES Algorithm is that it does not 
calculate the approximation of the solution at each iteration; only the 
final approximation λm is computed.

To terminate the iterations of the GMRES algorithm, we use the 
L-curve criterion. The L-curve is the graph obtained by connecting 
consecutive points in the sequence [22,23]:

pk=(ln(λk ), ln(rk)),  k=1, 2, 3...

In [23] Hansen shows that for discrete ill-posed problems it turns 
out that the L-curve always has a characteristic L-shaped appearance 
with a distinct corner separating the vertical and the horizontal parts of 
the curve. Calvetti et al. [24] shows that the optimal stopping criterion 
for the GMRes algorithm applied to liner ill-conditoned system 
corresponds to the vertex of the L-curve.

In this way, the L-curve clearly displays the trade-off between 
minimizing the residual norm and the solution norm.

Contact Pressures Identification
The example concerns contact identification on an inaccessible 

contact area. The data of the inverse problem are generated by solving 
the finite elements discretization of the direct problem. The thicknesses 
of meshes used for that are finer then that we used for solving the 
inverse problem.

Domain Ω is a square plate (1. × 1.) with a circular hole (R1=0.20225), 
where a fixed rigid disc (R2=0.2) is placed. Figure 2 shows the geometry 

 

Figure 2: Geometry of the problem studied.
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and boundary conditions applied to the plate. The mechanical 
properties of the plate are given in Table 1. When tractions are applied 
on the plate, it comes into contact with the lower part of the disc 
(Figure 2). The problem is to identify the contact pressure distribution 
and the displacements on the interface between the plate and the disc, 
by using over specified data provided for the external boundary. It 
should be noted here that the contact problem is nonlinear. However 
the data completion problem must be posed for that part of the domain 
where linear elasticity exists. The over specified data are generated by 
solving a direct problem using Hertz’s analytical contact law. Here, we 
consider a frictionless contact so that only normal pressure is taken 
into account. Moreover, plane strain hypothesis is assumed (Figure 3).

The finite elements discretization of the equations (8) and (11) 
leads to ill-posed linear systems. This was expected as they are inverse 
problems. Since the Schur complement is too expensive to compute, we 
use the GMRes algorithm described above.

The results obtained by solving the corresponding Cauchy problem 
are the normal stress components and the displacements field on Γi. 
Hence, the contact zone is the part of the boundary where the normal 
stress components are not null. When carrying out identification based 
on measurements, it must be kept in mind that measured data are 
subject to noise whose effects have to be studied. In this case, the data are 
synthetic, and therefore suffer from some errors (approximation error, 
roundoff error . . . etc). We added a noise generated by a MATLAB 
routine (randn) to the computational noise. The displacement 
measurements are polluted by a noise level at 5% and 10%.

Figures 4-6 depict the radial displacements ur and normal stress σ.n 
reconstruction on the internal boundary of the plate with ND, SPP and 
SPD algorithms.

For the ND and SPP algorithms, the identification was carried out 

 

Figure 3: Illustration of the equivalence between Dirichlet-to-Neumann and 
the preconditioned Richardson procedure for the Cauchy-Steklov-Poincare 
equation.

 

Figure 4: Reconstruction of the normal stress component distribution on the 
internal boundary of the plate for noise free (N. L.=0%)) data using DN, SPP 
and SPD algorithms.

Disc and plate Aluminium
Modulus of elasticity E=70000 M P A

Poison coefficient ν=0.31

Friction coefficient µ=0
Load applied to the plate F=1e + 7 N/m

Table 1: Mechanical characteristics of the plate and the disc.

 

Figure 5: Dual Steklov-Poincare Solver: Reconstruction of the normal 
displacement component distribution on the internal boundary of the plate for 
noise free (N. L.=0%)) data and noisy (N. L.=5%, N.L;=10%) data.

 

Figure 6: Dual Steklov-Poincare Solver: Reconstruction of the normal stress 
component distribution on the internal boundary of the plate for noise free (N. 
L.=0%)) data and noisy (N. L.=5%, N.L;=10%) data.



Citation: Kadria ML (2015) Identification of Contact Pressures in Two and Three-Dimensional Solid Bodies from Cauchy Data. J Appl Mech Eng 4: 
161. doi:10.4172/2168-9873.1000161

Page 6 of 10

Volume 4 • Issue 2 • 1000161
J Appl Mech Eng
ISSN:2168-9873, an open access journal 

using over-specified data on the upper and lateral boundaries. It can be 
seen that the reconstructed stress does not approximate well the exact 
one: this is a consequence of the derivation operation. Although not 
presented here, we obtained an accurate numerical solution when the 
over-determined boundary Γc and Γi are complementary over ∂Ω (i.e 
∂Ω=Γc ∪ Γi). However, in practice, we cannot have stress measurements 
on the dirichlet boundary real-world problems.

Figure 3 shows how the Dirichlet-to-Neumann algorithm is 
equivalent to a pre-conditioned Richardson procedure for the Cauchy-
Steklov-Poincar´e equation as we have mentioned in section 4.

For SPD algorithm, the identification was carried out using over 
specified data only on the upper boundary which was discretized onto 
65 nodes. We note that the numerical solution presented in Figures 5 
and 6 approaches the exact solution as the noise level decreases and that 
the numerical results obtained by the SPD method are accurate and 
convergent with respect to decreasing the levels of noise added into the 
input data. We note that in order to preserve the stability of the method 
it is necessary to use a stopping criterion to cease the iterative process 
before the point where the errors start to increase due to the added 

noise. Figure 7 shows the error 
( )
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|| ||
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u u
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u as a function of the 

number of iterations. It can be seen that the error e2 decreases rapidly 
over the first few iterations but the rate of convergence decreases as 
the number of iterations increases. Thus the iterative process has to 
be stopped at a point where the error e2, obtained by comparing the 
calculated solution with the exact solution, stops decreasing. Moreover, 
if the number of iterations is large, due to the accumulation of the 
numerical noise, the error e2 starts to increase, this property is called 
semi-convergence. 

As expected, displacements reconstruction is better than that for 
the stresses, particularly when the data are noisy. The reason is that 
the stresses are homogeneous with the displacements gradient and it is 
well known that the derivation is an ill-posed operation (the influence 
of noise is considerable). The identification is very satisfactory for 
free noisy data. For noisy data, the contact zone is well localized and 
the contact pressures are recovered correctly. However, some fairly 
significant oscillations appear on the free boundary. The table 2 
provides relative error on displacements and number of iterations as 

a function of the number of degrees of freedom on Γc. Γc is the upper 
boundary of the plate (boundary subjected to the traction load).

 We discretize Γc respectively to 17, 33, 65, 129 and 257 nodes, 
the table 2 provides for each of the selected meshes, the number of 
iterations necessary to reach the solution for a free noisy data. The 
main conclusion we draw to is that provided that the data information 
on Γc is sufficiently rich, the performances of the SPD algorithm are 
weakly sensitive to the amount of that information. Indeed, the quality 
of reconstruction process remains almost unchanged; no improvement 
is achieved by adding finite element nodes on Γc. 

The following point to investigate is how the SPD solver depends 
on the geometrical characteristics of Γc: length and position. For this 
purpose we run five numerical experiments for different types of over 
specified boundary’s (γ1: the upper and lateral boundaries of the plate, 
γ2: the upper boundary, γ3: the middle half of the upper boundary, γ4: 
the right half of the upper boundary and γ5: the left half of the upper 
boundary).

 Two relevant indicators are recoding in the table 3: the number of 
iterations to reach the solution and the relative error on displacements. 
We note that the quality of reconstruction clearly suffer from decreasing 
the measure of Γc, besides keeping the size of Γc unchanged the position 
of it is very important regarding the quality of the information that can 
contain; we can see that γ3 and γ5 lead to nearly the same identification 
but better than that obtained with γ2 (although of the same size) this is 
due to the information concerning the singularity in the stress tensor 
at the corner which is directly contained in γ4 and γ5. The SPD method 
appears to be powerful and economic in comparison to the SPP one. 
In fact the primal schur complement matrix results from the static 
condensation on Γi of the rigidity matrix, so it has the same distribution 
of singular values and thus inherits its initial ill-posedness, whereas 
the dual complement schur matrix can be seen as the inverse of the 
primal one so its condition number is obviously better. Therefore SPD 
is suitable for dealing with more complex data completion problems 
(e.g. 3D).

Dual Steklov-Poincare Algorithm for the resolution of 
the Cauchy problem in 3D linear elasticity

We investigate now the performance and accuracy of The SPD 
method through numerical three-dimensional examples where the 
measured data are extracted from the results of the direct problems: 
the identification of the indentation pressure of a heterogeneous solid 
and boundary data completion at the interface between two bonded 
elastic bodies.

 

Figure 7: Dual Steklov-Poincare Solver: Rate of convergence for noisy (N. 
L.=5%) data.

dof on Γc kiter e2(u)
17 34 0.0109
33 34 0.0109
65 37 0.0104

129 37 0.0105
257 35 0.0108

Table 2:  Effect of the number of degrees of freedom on Γ
c
.

Γc γ1 γ2 γ3 γ4 γ5

kiter 34 26 34 26 26
e2(u) 0.0093 0.0882 0.0109 0.0692 0.0698

Table 3: The accuracy and the speed of the SPD algorithm with respect to length 
and position of Γc.
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Identification of indentation pressure on a two-layer 
solid

The identification of the indentation pressure on a composite solid 
and the stress on the interface is a major challenge in the design of 
composites. The example to be dealt with concerns the indentation 
of a two-layer solid composed of two different materials (steel and 
titanium) (Figure 8). By symmetry, the problem is reduced to that of a 
quarter of the solid. The problem is stated as follows:

•	 Over specified data: displacements and surface traction are 
known on the rectangular area denoted by Γm.

•	 Boundary Γb gathering the four side faces: two have Dirichlet 
boundary conditions of symmetry, the two other are free from 
surface tractions.

•	 Boundary Γu where the data are unknown includes the 
remaining faces (the bottom face and the remaining area of the 
top face).

•	 Elastic parameters: Layer 1 is steel with Es=2.1 × 1011P a, 
νs=0.34; Layer 2 is titanium with Eti=1.05 × 1011P a, νti=0.29.

Our aim is to identify the indentation area and the pressure 
distribution on the solid boundaries including the interface and the 
cross section by using the over specified data measured on Γm. The 
measured data are generated numerically by solving the direct problem 
where the pressurized area (disk with radius Rp) and the expression of 
the pressure distribution as a function of the radius r are given by:
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The direct and inverse problems have been carried out using 
MATLAB software [25]. The geometry and mesh of the problem are 
displayed on Figure 8. The number of nodes on Γu is 347, whereas 
the number of nodes on Γm is 142. Hence, there are 345 × 6=2082 
variables to identify for only 142 × 6=852 over specified known data. 
The measured data used are altered with noise that is a function of the 
mesh refinement, since it is extracted from finite element results of the 
direct indentation problem. But, in order to assess the efficiency of the 
method we add also some noise to the measured data. 

Figures 9-17 show various fields obtained by the exact and the 
identified solutions. Figure 9 show the map of the displacement norm 
∥ u ∥L2 obtained from the exact and the identified solutions with noisy 
data. Figure 10 show the map of the Von Mises equivalent stress 
obtained from the exact and the identified solutions. Figures 11 and 

12 show the profiles of the Von Mises equivalent stress σeq and the 
stress component σzz on edges 1 and 2 and on the diagonal line; good 
reconstruction of the exact fields can be seen.

Figures 13 and 14 show the exact and identified displacement 
component uz and Von Mises equivalent stress distributions on a 
diagonal section of the solid. These show good agreement with the exact 
fields for the displacement component uz and Von Mises equivalent 
stress. The stress discontinuity at the interface of the two materials 
is well recovered. Figure 15 show maps of the exact and identified 
displacement component uz distributed on the top face of the solid. 

 

Figure 8: The geometry and the mesh of the solid.

 

Figure 9: Top: exact displacement field-Left: Identified displacement field. Noise 
0%. Bruit 0%-Right: Identified displacement field. Noise 5%.

 

Figure 10: Left: Exact Von Mises equivalent stress. Right: Identified Von Mises 
equivalent stress. Noise 0%.

 

Figure 11: Left: Exact and identified Von Mises equivalent stress_egon the 
edges. Noise 0%-Right: Exact and identified Von Mises equivalent stress_eqon 
the diagonal line. Noise 2%.
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Figure 12: Left: Exact and identified stress_zzon the edges. Noise 0%-Right: 
Exact and identified Stress_zzon the edges. Noise 5%.

Figure 13: Left: Exact displacement uzon the diagonal section. Right: Identified 
displacement uzon the diagonal section noise 5%.

Figure 14: Left: Exact Von Mises equivalent stress on the diagonal section. 
Right: Identified Von Mises equivalent stress on the diagonal section. Noise 5%.

Figure 15: Left: Exact displacement uzon the topface. Right: Identified 
displacement uzon the top face. noise 0%.

Figure 16: σzz on the interface.-Right :Identied stress-σzz on the interface. 
noise 5%.

Figure 17: Left: Exact tangential stresson the interface-Right: Identified 
tangential stresson the interface. Noise 0%.

The displacement is well recovered.

Figures 16 and 17 show the maps of the exact and identified stress 
component σzz and the norm of the tangential stress vector σt defined by 
the equation 2 2 )(σ σ σ= +t yzxz

, distributed on the interface between the 

two materials of the solid. Here, too, a good correlation exists between 
the exact and identified results with reasonable accuracy, even for the 
interface tangential stress.

Boundary data identification of three-dimensional bonded 
structure

This application considers a bonded structure i.e. two bodies 
bonded along their common interface, by a thin adhesive layer. In the 
simplified models, the adhesive disappears, replaced by an interface 
transmission condition [26]. The problem has two planes of symmetry.  
Hence, only one quarter is modeled. Figure 18 shows the deformed 
shape and the distribution of the displacement field issued from the 
direct problem, defined as follows:

•	 The first solid is a cylinder with radius r=0.248 m and a length 
L=3 m. The material is steel with a Young’s Modulus Es=2.1 × 
1011Pa and a Poisson coefficient νs=0.34.

•	 The second solid is a rectangular box of dimension 1 × 1 × 2 
m, which contains a cylindrical hole of radius 0.250 m. The 
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Figure 18: Left: the geometry used in the identification process. Right: 
displacement field distribution in the direct problem.

Figure 19: Sensitivity of the identified displacement uy along the edge x=0 
and y=0.25, Left: to the localization of the over specified data. Right: to the 
amount of over specified data.

 

Figure 20: Sensitivity of the identified stress σy along the edge x=0 and y=0.25. 
Left: to the amount of the over specified data. Right: to the localization of the 
over specified data.

material is aluminum with a Young’s Modulus Ea=7 × 1010Pa 
and a Poisson coefficient νa=0.27.

•	 The face y=0 is clamped: u=v=w=0.

•	 The face x=0 is a plane of symmetry and is fixed in the 
x-direction: u=0.

•	 The face z=0 is a plane of symmetry and is fixed in the 
z-direction: w=0.

•	 On the circular face of the cylinder at z=1.5 m, a displacement 
is prescribed in the y-direction: Dimp=−0.1 m.

A static finite element analysis was carried out using finite elements 

with the MATLAB Software. The result is displayed in Figure 18. 
Measured data (displacements and forces) are extracted on Γm for use 
in the identification problem. Figure 18 shows the geometry used in 
the identification problem: the cylinder is ignored. The mesh used in 
this case has 1203 nodes, 4514 elements, 313 nodes on Γu. We identify 
the stress and displacements using different localizations of the over- 
specified data Figure 18:

•	 Γms: the top face of the solid with 82 nodes.

•	 Γml: the lateral side of the solid with 225 nodes.

•	 Γl: the left lateral side of the solid with 118 nodes.

•	 Γml: the boundary defined by Γm=Γms ∪ Γml with 293 nodes.

To stress the efficiency of the SPD algorithm we use also incomplete 
data: only tangential displacements on the over specified boundaries 
are used for the identification problem, the normal displacement is left 
unknown.

Figures 19 and 20 show the identified displacement uy and stress 
σyy along the edge defined by x=0 and y=0.25. We can see that the 
displacements are perfectly identified even when we use few and 
incomplete over specified data. The identified stresses are as well 
sensitive to the quantity of over specified data as to their localization; 
however, an acceptable identification remains possible.

Conclusion
In this work we presented three numerical methods for solving 

the Cauchy problem in the framework of linear elasticity. The 
methods proposed were applied in practical situations taken from 
engineering mechanics: contact pressure recovery, identification of 
the indentation pressure of a heterogeneous solid and boundary data 
completion in a bonded structure. The numerical results also suggest 
that the SPD algorithm is an accurate and reliable numerical technique 
for the identification of variables in elasticity in both two and three-
dimensional domains even if the area of the measured data is smaller 
than the area where the data are identified. The application of the 
methods to identify material properties and shape of the boundaries 
will be the subject of a forthcoming paper.
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