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Introduction
Reactive oxygen species (ROS) are oxygen-containing side products 

of normal aerobic metabolism. Although it was initially believed that 
ROS constitute only damaging by-products, recent evidence suggest 
that ROS actively participate in signal transduction pathways and 
regulate cell survival and proliferation in a dose-depended manner [1,2]. 
Endogenous intracellular redox state is tightly controlled by free radical 
scavenging systems and the appropriate ROS levels differ among cell 
types and differentiation status [3]. Hematopoietic stem cells (HSCs) in 
mice reside mainly in the ROSlow subset of hematopoietic progenitors 
[4], whereas forced increase of ROS in human Lin-CD34+CD38- cord 
blood cells leads to loss of stem cell activity [5-7]. Similarly, though 
increased ROS levels in tumor cells have been implicated in cancer 
initiation and progression. 

Cancer stem cells (CSCs) maintain a low redox status, apparently 
through upregulation of anti-oxidative enzymes [1,2,8]. Elevated 
ROS levels drive out of quiescence both normal and clonal stem cells, 
while administration of N-acetylcysteine, an antioxidant, can partially 
restore the self-renewal capacity [9]. Moreover, ROS production 
via constitutive activation of the Ras oncogene appears to drive the 
leukemic progression [10]. In acute myeloid leukemia (AML) free 
radicals, antioxidant enzymes and oxidative damage products are 
elevated, but the redox state in leukemia blasts has not been thoroughly 
characterized and the role of ROS in leukemogenesis is still unclear 
[11-14]. Most adults with acute myeloid leukemia (AML) are not 
cured due to chemoresistance or relapse. AML may be organized in 
a similar way to normal hematopoiesis and, hence, disease recurrence 
could be due to a subset of leukemic stem cells (LSC) [15]. Here, we 
assessed ROS levels in primary AML blasts and we identified a distinct 

ROSlow subpopulation with a quiescent, chemoresistant phenotype and 
leukemia-initiating cell activity (LIC).

Methods 
Patients 

Bone marrow (BM) or peripheral blood (PB) was obtained from 44 
newly diagnosed, CD34+ AML patients (Table 1) after informed consent 
and Institutional Review Board approval. AML cell lines (U937, THP1) 
were obtained from DSMZ (Braunschweig, Germany). Mononuclear 
cells were isolated over Ficoll-Hypaque and used either immediately or 
after cryopreservation.

 Cell isolation and assessment of ROS levels and cell cycle 
status

FACS-sorting of total CD34+ and ROSlow live cells was performed by 
using a FACSVantage SE cytometer (Becton Dickinson). Assessment 
of ROS levels in sorted subpopulations was done using the redox-
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sensitive fluorescence dye 2’7;-dichlorodihydrofluorescein diacetate 
(DCF, Molecular Probes Inc) as previously described [16]. Relative 
ROS levels in AML blasts were determined as the ratio of the Mean 
Fluorescence Intensity (MFI) values of DCF in AML CD34+ cells to the 
MFI of total lymphocytes. For cell-cycle analysis sorted subsets were 
stained with Ki-67 and 7-AAD after fixation and permeabilization with 
Cytofix/CytoPerm (BD Biosciences).

Antibodies, data acquisition and analysis

The following antibodies and fluorescent compounds were used: 
CD2 (clone RPA-2.10), CD3 (HIT3a), CD4 (RPA-T4), CD8 ( RPA-T8), 
CD19 (HIB19), CD20 (2H7), GPA (GA-R2), CD90 (5E10), CD34 
(8G12), CD56 (NCAM 16.2) and CD45 (2D1), Ki-67 (B56), annexin 
V, propidium iodide (PI) and 7-aminoactinomycin D dye (7AAD), all 
from BD Biosciences; CD45 (J33) and CD38 (LS198.4.3) from Beckman 
Coulter; CD123 (6Η6), and CD45RA (HI100) from Biolegend). Data 

Pt 
No

Age Sex Diagnosis Source Cytogenetics FLT3/ITD
mutation Induction chemo

Response
Υ=CR

Ν=No CR

ROSlow 
% of total 

CD34+

ROS Relative 
MFI

1 60 F sAML PB del(5q) negative 7+3 regimen Ν 2.08 0.604
2 82 F sAML PB N/D N/D No treatment N/A 0.24 8.853
3 65 F de novo AML BM normal negative 7+3 regimen Υ 0.58 2.259
4 56 M sAML BM complex negative 7+3 regimen Ν 0.69 3.777
5 68 M sAML PB trisomy 8 N/D 5-azacitidine Ν 2.18 2.639
6 69 M sAML PB normal N/D 5-azacitidine Ν 3.11 1.283
7 50 M de novo AML PB inv(16)(p13.1q22) negative 7+3 regimen Υ 0.34 3.741
8 74 M de novo AML BM N/D N/D No treatment Ν 0.3 3.051
9 66 F de novo AML PB del(20q) N/D 7+3 regimen N 2.34 11.095
10 74 F de novo AML PB N/A positive 7+3 regimen Ν 0.31 6.001
11 77 M de novo AML PB N/D positive LD-AraC Ν 0.6 1.520
12 72 M de novo AML PB normal positive 7+3 regimen Υ 0.4 3.839
13 73 M sAML PB trisomy 8 negative 7+3 regimen Υ 1.41 1.270
14 78 M de novo AML PB N/D positive 7+3 regimen Ν 1.92 1.294
15 39 M de novo AML PB normal N/D 7+3 regimen Υ 0.29 2.460
16 76 F de novo AML PB N/A N/A N/A N/A 1.27 3.102
17 51 F de novo AML PB monosomy 7 negative 7+3 regimen Ν 0.84 2.360
18 35 M de novo AML BM normal N/D 7+3 regimen Υ 2.69 8.991
19 25 F de novo AML PB inv(16)(p13.1q22) negative 7+3 regimen Υ 0.41 3.236
20 77 M de novo AML BM N/A negative N/A N/A 2.17 3.819
21 66 M de novo AML PB normal negative 7+3 regimen Ν 0.61 8.093
22 76 F de novo AML PB N/A positive No treatment N/A 0.35 2.698
23 75 F sAML BM N/D N/D No treatment N/A 4.99 5.720
24 81 F de novo AML PB N/A positive LD-AraC Ν 0.2 1.722
25 56 M de novo AML PB N/A N/D 7+3 regimen Ν 0.4 11.529
26 77 M de novo AML PB N/A N/A No treatment N/A 0.34 3.340
27 75 M sAML PB N/A N/A No treatment N/A 1.2 6.484
28 49 M sAML PB monosomy 7 N/D 7+3 regimen Ν 0.52 3.965
29 83 M sAML PB normal N/D LD-AraC Ν 0.79 6.090
30 60 M de novo AML BM N/D N/D No treatment N/A 0.52 7.919
31 76 F de novo AML PB N/D N/D No treatment N/A 0.8 1.389
32 68 M de novo AML PB complex N/D No treatment N/A 0.5 1.811
33 63 M de novo AML BM normal negative 7+3 regimen Ν 0.2 3.969
34 78 M sAML PB N/A N/A No treatment N/A 1.22 6.427
35 72 F de novo AML BM normal N/A No treatment N/A 1.4 2.366
36 68 M sAML PB del(12)(p11.2) N/D 5-azacitidine N 1.5 2.899
37 74 M sAML BM normal N/D 5-azacitidine N 0.43 0.789
38 67 M de novo AML BM normal N/A 7+3 regimen N 0.7 3.415

39 66 M de novo AML PB Monosomy 7q, 
trisomy 1q N/A 7+3 regimen N 1 6.335

40 69 M sAML PB normal N/D 5-azacitidine N 0.5 5.292
41 51 F de novo AML PB inv(16)(p13.1q22) negative 7+3 regimen Y 0.78 4.43
42 72 M sAML PB N/A N/D 5-azacitidine N 0.81 6.28
43 60 M de novo AML BM normal negative 7+3 regimen N 0.2 4.62
44 48 M de novo AML BM normal negative 7+3 regimen N 0.4 5.02

Table 1: Parameters of patients included in study. AML, acute myeloid leukemia; CG, cytogenetics; F, female; M, male; MDS, myelodysplastic syndrome; sAML, AML 
evolving from antecedent MDS; N, normal; N/A, not available; N/D, not done.
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acquisition was performed on a 5-color EPICS XL (Coulter, Fullerton, 
CA, USA) and a 4-color FACSCalibur (BD Biosciences, CA, USA) 
cytometers and analyses were done by using Flowjo software (Treestar, 
Ashland, OR).

Fluorescence in situ hybridization (FISH)

FISH was performed in sorted ROSlow live cells according to 
standard protocols, using the Vysis D7S522/CEP7 FISH Probe Kit. 
In total, approximately 200 nuclei were scored in each of 3 patients 
bearing the -7 cytogenetic abnormality.

Immunophenotypic analysis of leukemic hematopoietic 
hierarchy 

Cells expressing mature lineage markers were depleted from 
mononuclear cells after staining with an antibody cocktail consisting 
of anti-CD2, CD3, CD4, CD8, CD19, CD20 and GPA [17] and anti-
PE immunomagnetic MicroBeads (Miltenyi Biotec). Purified Lin- cells 
were then subjected to 5-color immunophenotypic analysis to define 
the maturation stage of CD34+ AML and ROSlow cells by concomitant 
staining with DCF and CD34, CD38, CD90, CD123 and CD45RA.

In vitro chemoresistance assay in total CD34+ blasts 

Briefly, 106/ml total AML cells were cultured in triplicates for 24h in 
standard medium (RPMI 1640 & 10% FBS) with or without increasing 
concentrations of daunorubicin (DNR, 0.5-2 μΜ, Pharmacia & 
Upjohn, Milan, Italy) or cytarabine (AraC, 2.5-10 μΜ, Pfizer, Milan, 
Italy) as previously described [18]. Drug-induced death and apoptosis 
were assessed by flow cytometry using Annexin-V/Propidium Iodide 
staining. 

Xenograft assay

The in-vivo engraftment capacity of sorted cells was analyzed as 
described elsewhere [19]. Briefly, cells (2x105) ROSlow cells or 106-107 
bulk cells from each patient were intravenously injected into non-obese 
diabetic severe combined immunodeficient (NOD-SCID) mice and 
leukemic engraftment was assessed 12 weeks after transplantation. 

Single-cell phosphospecific flow cytometry 

For the determination of the levels of phosphorylated pSTAT-3 
and pSTAT-5, sorted total CD34+ AML and ROSlow cells were either left 
untreated, or were stimulated with Granulocyte-Colony Stimulating 
Factor (G-CSF) or Granulocyte Macrophage Stimulating Factor (GM-
CSF) (Miltenyi Biotec GmbH, Germany) for 15 minutes at 37ºC. 
Stimulation was halted by fixation with Cytofix Fixation Buffer (BD 
Biosciences) and then cells were permeabilized with Perm Buffer III (BD 
Biosciences) and stained with the following antibodies: CD34 (clone 
8G12), phospho-STAT3 (clone Y705), and phospho-STAT5 (clone 
Y694). Fluorescence minus one (FMO) controls were used and basal 
phosphorylation levels of pSTAT3 and pSTAT5 were expressed as log2 
[Median fluorescence intensity (MFI) (unstimulated)/MFI (FMO)] 
and potentiated levels as log2 [MFI (stimulated)/MFI (unstimulated)]. 

Statistical analysis 

All analyses were performed using SPSS 17.0 software (SPSS Science, 
Chicago, IL). Data are presented as mean ± SEM. The significance of 
the differences was assessed by unpaired or paired Student’s t test and 
one-way ANOVA as appropriate. Correlations of ROS MFI and the 
percentage of ROSlow subset with age (n=44), karyotype (n=26) and 
response to initial treatment (n=30) were performed using Pearson's 
correlation. 

Results 
ROS content in primary AML cells

Intracellular ROS levels of FACS-sorted CD34+ AML cells exhibited 
a wide variation among the patient samples (median relative MFI: 3.41, 
range 0.6-11.52, Figure 1a). In order to test the potential interference 
of exogenous factors in the fluorocytometric assessment of ROS using 
the DCF dye, e.g. the immediate exposure of cells to higher oxygen after 
isolation, or modulation by the activity of P-glycoprotein (P-gp) [20], 
we performed repeated measurements in a) paired samples before and 
after the 2-hour sorting procedure, b) in paired fresh and freeze-thawed 
samples and c) upon treatment with the P-glycoprotein efflux pump 
inhibitor cyclosporine A (supplementary Figure 1). All measurements 
showed little variation confirming that the heterogeneous DCF pattern 
in AML cells reliably reflects the endogenous redox status of AML 
blasts. 

It has been reported that internal tandem duplication of the FLT3 
gene (FLT3-ITD) increases ROS production potentially via overactive 
STAT5 signaling [11], thus the heterogeneity of ROS content may, at 
least in part, mirror the diversity of oncogenic signaling pathways. 
Nevertheless, we found no differences in ROS levels between FLT3-ITD 
positive and negative AML patients (p=0.4, Figure 2). Likewise, there 
was no association of ROS levels with age, karyotype, AML subtype, 
i.e. secondary or de novo, and response to induction chemotherapy 
(Figure 2a-c).

Identification and characterization of a novel subpopulation 
of ROSlow AML blasts

Unexpectedly, we noticed that in contrast to the AML cell lines 
U937 and THP-1, both of which expressed ROS homogeneously, 
primary blasts showed a diversified DCF/DA staining with a 
discrete fraction of ROSlow cells at the left tail of each distribution 
(median=0.61% of CD34+ cells, range 0.2% to 4.99%, Figure 1b). To 
confirm that the ROSlow subpopulation contained exclusively leukemic 
cells and did not represent contaminating normal cell populations or 
debris, we FACS-sorted ROSlow events from 3 individuals with AML 
and subjected them to morphological evaluation after staining with 
May-Grünwald Giemsa, cytometric analysis of aberrant surface marker 
expression and fluorescence in situ hybridization (FISH) analysis of 
specific cytogenetic abnormalities. All analyses confirmed the clonal 
nature of ROSlow cells (Figure 1c-f).

Similar to the intracellular ROS levels, the prevalence of ROSlow 
cells did not differ based on age, gender, karyotype, FLT3-ITD status, 
and response to initial treatment (Figure 2a-d). By contrast, patients 
with secondary AML evolving from myelodysplastic syndrome (MDS) 
displayed a twofold increase of ROSlow subpopulation compared with 
de novo AML patients (1.44% ± 0.32% vs. 0.78 ± 0.12%, respectively, 
p=0.029, Figure 2d). Notably, the ROS levels and the percentage of 
ROSlow subset were not intercorrelated and were both identical among 
BM and PB (supplementary Figure 2). 

Recent findings challenge the leukemia stem cell (LSC) model and 
suggest that in approximately 90% of CD34+ AML cases LSCs reside 
in the granulocyte-macrophage progenitor (GMP) and lymphoid-
primed multipotential progenitor (LMPP) compartments (LMPP/
GMP-like AML) [17]. We observed that in five LMPP/GMP-like AML 
samples, the ROSlow fraction contained significantly more CMP-like 
(p=0.04) and less GMP-like cells (p=0.03) compared to the bulk AML 
population. Also, LMPP-like cells were lower in the ROSlow subset, 
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while megakaryocyte-erythroid progenitor (MEP)-like cells were 
higher, but statistical significance was not reached for both progenitor 
types (Figure 3a-c). Of note, CD38 expression was identical among 
ROSlow and total leukemia blasts (supplementary Figure 3). Although 
these results suggest that the ROSlow subset does not reside in the 
recently proposed LSC compartment of LMPP/GMP-like AML, when 
we assessed LIC activity in 16 AML samples by transplanting both 
sorted ROSlow and total leukemia blasts from each patient in NOD/
SCID mice we observed identical levels of primary engraftment in 3/16 
samples (median values: ROSlow 1.4% vs. total blasts 1.5%), indicating 
that ROSlow cells have potentially comparable leukemogenic potential 
with the bulk leukemic population (Figure 4a). 

Next, we evaluated quiescence and chemoresistance, two cardinal 
properties of leukemia propagating cells, in sorted ROSlow cells. Cell 
cycle analysis revealed that significantly more ROSlow cells resided in 
the G0 phase compared to the bulk leukemic population (70% ± 7.4% 
vs. 51% ± 9.2%, respectively, p=0.027, Figure 4b-c). Additionally, in in 
vitro chemosensitivity assays, sorted ROSlow cells exhibited significantly 

increased chemoresistance in daunorubicin and cytarabine compared 
to the bulk AML population (p=0.02, Figure 4d), whereas in a different 
set of experiments performed by using total blasts only, the proportion 
of ROSlow viable, non-apoptotic cells increased significantly after culture 
with either daunorubicin or cytarabine (supplementary Figure 4). 

G-CSF and GM-CSF-induced overexpression of the phosphorylated 
form of STAT5 in AML blasts associates with resistance to induction 
chemotherapy [21,22], whereas the magnitude of GM-CSF-induced 
activation of pSTAT5 in Juvenile Chronic Myeloid Leukemia, a typically 
chemoresistant malignancy, correlates with disease status [23]. Using 
single-cell phosphospecific flow cytometry we observed a marked GM-
CSF-induced upregulation of pSTAT5 in ROSlow cells compared to the 
bulk AML cells, consistent with a chemoresistant phenotype of ROSlow 
subset (p=0,02, Figure 4e and supplementary Figure 5). By contrast, 
no differences in basal and G-CSF-induced levels of both pSTAT5 and 
pSTAT3 were noticed among the two cell populations (Figure 4e and 
supplementary Figure 5).
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Figure 1: Interpatient variability of redox state in AML cells and identification of a novel “oxidative state-low” leukemic subpopulation. (a) Waterfall plots illustrating 
the distribution of values for ROS mean fluorescence intensity (MFI) and the prevalence of ROSlow cells expressed as percentage of total CD34+ live cells. (b) 
Representative flow cytometry plots of DCF/DA staining in U937 and THP-1 AML cell lines (performed in triplicates, upper plots) and in primary AML blasts (bottom 
plot, gated on CD45lowCD34+ live cells) showing a discrete ROSlow subpopulation only in the latter sample (arrow). (c) FACS sorting of the ROSlow subpopulation 
of AML blasts. Plots are gated on CD45lowCD34+ live cells. (d) Sorted ROSlowCD45lowCD34+ cells were morphologically consistent with blasts and (e) bore the 
characteristic cytogenetic abnormality (monosomy 7), as confirmed by FISH analysis which revealed single hybridization signal for each chromosome 7 probe (regions 
7q31 and 7p11.1-q11.1) in 93.6% of nuclei. (f) The ROSlow subset is enriched in clonal cells as indicated by the high expression of the aberrant marker CD56 in 3 
AML patients. Sorted ROSlow cells were stained with May-Grünwald-Giemsa. Photographs were taken by using a NIKON Eclipse TE2000U Inverted microscope; 20x 
and 40x magnifications are shown.
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Discussion
The concept of leukemia stem cells which are able to initiate 

and propagate the disease is now well established [24]. Accurate 
identification and targeting of LSCs is of obvious significance for the 
effective treatment and the complete eradication of the leukemic clones. 
However, the characterization of LSCs by using surface markers is 
highly inconsistent among the various research groups, whereas novel 
data suggest that LSC may even share a progenitor rather than a stem 
cell phenotype [17,25,26]. Numerous data are now accumulating on the 
role of energy metabolism and in particular the redox state of cancer 
stem cells. Recently is has been shown that, similar to the normal HSCs 
in mice, most LSCs in human AML have low ROS levels [27]. However, 

no distinct subpopulation with low redox levels was defined. In the 
present work, we report for the first time the identification of a novel 
rare subpopulation of CD34+ ROSlow AML cells with a chemoresistant, 
LSC-like phenotype. 

In line with recent findings [27], we observed high interpatient 
variability of ROS content in AML CD34+ cells. The biology under 
the heterogeneity of ROS staining is obscure. Although leukemogenic 
pathways via Ras [10] or FLT3 mutations [28] have been associated 
with increased redox state, we were not able to find a correlation 
of ROS levels with either the FLT3/ITD mutation, or with clinical 
parameters of disease aggressiveness. Though the limited size of our 
cohort weakens the statistical power of the above correlations, ROS 
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homeostasis is characterized of high complexity [3] thus it appears 
rather unlikely that a single mutation would be responsible for the 
observed heterogeneity in ROS levels. 

The staining pattern of DCF/DA is typically a continuum of 
intensities, therefore arbitrary cut-offs are often used to define low, 
“normal” and high levels of ROS [4,27]. By contrast, we identified a 
small clonal AML subpopulation with very low redox levels, clearly 

distinguishable from the bulk AML cells. The prevalence of ROSlow 
cells was not correlated to the total ROS content and, though it was 
not associated with poor risk features, it was significantly increased 
in patients with sAML. A possible explanation for this finding is 
that the oxidative stress in the progenitor cell compartment is more 
intense in MDS compared to AML and potentially selects for resistant, 
ROSlow progenitors [11,29,30]. As mentioned above, the accurate 
immunophenotypic characterization of LSCs is controversial. In 
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an elegant paper Goardon and colleagues proposed that LSCs in the 
vast majority of AML patients share progenitor rather than stem 
cell characteristics, similar to the normal granulocyte-macrophage 
progenitors (GMP) and the currently poorly characterized lymphoid-

primed multipotential progenitor (LMPP) [17]. In 5 patients with 
LMPP/GMP-like AML we observed that the ROSlow fraction contained 
less LMPP and GMP-like cells compared to the total leukemic 
population, whereas it was enriched in MEP-like cells implying a more 
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mature phenotype of ROSlow cells. Nevertheless, ROSlow cells exhibited 
comparable primary engraftment capacity in xenotransplantation 
assays with the bulk leukemia cells. Due to the rarity of ROSlow cells 
and the rigorous sorting procedure we could not perform secondary 
transplantations. However, recent data confirm that AML cells with low 
ROS levels are enriched in LICs [27], although the authors arbitrarily 
defined ROSlow cells as the 15% brightest dye fluorescence distribution 
of DCF, thus encompassing a considerably larger population of AML 
cells compared to the ROSlow subset in our study [27]. 

Quiescence and chemoresistance are considered key characteristics 
of LSCs [31]. Consistent with previous observations, reporting a strong 
correlation of ROS levels with the cycling status of normal HSCs [11], 
we found that, in contrast to the total AML cells, almost three-fourths of 
ROSlow cells were in G0 phase. Additionally, the ROSlow subset displayed 
significantly augmented in vitro chemoresistance to conventional 
chemotherapeutic agents, which is in line with the reported negative 
relationship between ROS levels and chemo- and radio resistance of 
cancer stem cells [2,8,32]. The chemoresistant phenotype of ROSlow 
cells was further corroborated by the over-exuberant response of 
pSTAT5 after perturbation with GM-CSF, a cell signaling aberration 
associated with aggressive biologic behavior [21,22].

To conclude, we have identified a novel, biologically distinct ROSlow 
subpopulation in CD34+ AML. Recent data show that mitochondrial 
priming via BH3-only proteins, which engage a ROS-dependent 
proapoptotic mechanism [33], correlates with the chemosensitivity 
of AML blasts [34], thus providing a potential explanation for the 
chemoresistant phenotype of ROSlow cells. Correlational studies of 
clinical and biological data with the alterations of the ROSlow subset in 
larger patient cohorts will help to determine the exact role of this novel 
subpopulation in key management issues in AML, such as prognostic 
assessment, detection of minimal residual disease and cell-specific 
therapeutic targeting.
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