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Abstract
The functional deficit caused by Spinal Cord Injury (SCI) is clinically incurable and current treatments have 

limited effects. Previous studies have suggested that cell-based therapy using Mesenchymal Stem Cells (MSCs) 
pre-treated with drugs or gene transfection have possible therapeutic effects. Hypoxic preconditioning is one of 
the most likely treatments of cell-based therapy without altering genes; however, few reports are available about 
Hypoxia-Preconditioned MSCs (H-MSC) transplantation for SCI. Here we demonstrate the therapeutic potential 
of H-MSC transplantation using SCI model rats. H-MSC expressed significantly higher mRNA levels of vascular 
endothelial growth factor-1 and carbonic anhydrase IX, hypoxia inducible genes. H-MSC transplantation resulted 
in remarkable functional improvement in the SCI model rats compared to no transplantation. Expression of brain-
derived neurotrophic factor and the autophagy-associated marker beclin1 mRNA was significantly upregulated in 
rat spinal cord that underwent H-MSC transplantation. Furthermore, conditioned medium of the H-MSC significantly 
prevented cell death of NG108-15 cells exposed to oxidative or inflammatory stress. These results suggest that 
hypoxia preconditioning is an effective strategy for SCI in cell-based therapy using MSCs.
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Introduction
Although current therapies, such as novel drugs [1] or neuro-

rehabilitation [2] have been developed to treat Spinal Cord Injury 
(SCI), these therapies could not achieve radical cure. Cell-based therapy 
using Mesenchymal Stem Cells (MSCs) has been gaining attention 
as a novel approach to treat the damage caused by SCI. MSCs can be 
isolated from various tissues, such as bone marrow [3] or adipose tissue 
[4], and have self-renewal and multi-lineage differentiation potential. 
Animal experiments [5] and clinical trials [6,7] have revealed that 
MSCs transplantation reduces lesion volume and promotes functional 
improvement of central nervous system disorders including SCI. 

The mechanisms of functional recovery after MSCs transplantation 
to treat SCI were suggested as 1) homing and neural differentiation 
of transplanted MSCs in the lesion site [8], 2) modulation of the 
inflammatory reaction by transplanted MSCs [9], 3) paracrine effects 
mediated by chemokines and growth factors released from transplanted 
MSCs, such as Neurotrophins (NT) 1 or 2, Brain-Derived Neurotrophic 
Factor (BDNF), Grail cell line-Derived Neurotrophic Factor (GDNF), 
and Vascular Endothelial Growth Factor (VEGF) [10-12]. However, 
the differentiation potential of MSCs in vivo remains unclear because 
very few transplanted MSCs are detected at the lesion site [11]. Thus, 
it has been proposed and commonly accepted that the functional 
benefits of MSCs transplantation are due to a paracrine effect [11,13]. 
The pathology of traumatic SCI results from primary damage (initial 
mechanical damage) and secondary damage due to vascular and 
biochemical effects [14]. MSCs transplantation to treat traumatic SCI 
is expected to reduce secondary damage of the spinal cord through a 
paracrine neuroprotective effect.  

Transplanting pre-treated MSCs using drugs [15] or gene 
transfection [16] has highly therapeutic effects in disease models. 

Culturing cells under hypoxic conditions is a less invasive, alternative 
method to pre-condition of transplanted cells [17-19]. Although MSCs 
are usually cultured under normoxic conditions, MSCs exist in low 
oxygen (hypoxic) conditions in vivo [20] and the oxygen tensions 
are an important factor during MSC culture because stem cells are 
particularly sensitive to their microenvironment [21]. VEGF is known 
as a key regulator of vasculogenesis and angiogenesis [22]. In addition, 
VEGF has neurotrophic and neuroprotective effects in vitro and in vivo 
[23,24]. Although several studies have demonstrated that VEGF mRNA 
or protein expression is upregulated in hypoxia-preconditioned MSCs 
[25-27], few reports have demonstrated the neuroprotective effects of 
hypoxia-preconditioned MSCs transplantation to treat SCI. Therefore, 
the present study aimed to determine whether hypoxia-preconditioned 
MSCs have a neuroprotective effect in vitro and in vivo and improve 
functional defects in a rat model of SCI.

Materials and Methods 
All protocols in this study were approved by the Animal Testing 

Committee Guidelines at Hiroshima University. Animal care and 
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handling procedures were in accordance with National Institutes of 
Health guidelines.

Isolation and differentiation of rMSCs

Rat MSCs (rMSCs) were harvested from the femurs and tibias 
of 3-week-old Sprague-Dawley (SD) rats. The cells were seeded onto 
a culture dish (Sumitomo Bakelite Co., Tokyo, Japan) and cultured 
in Dulbecco’s Modified Eagle Medium with low glucose (DMEM-L) 
(Sigma-Aldrich Co., St Louis, MO, USA) supplemented with 10% 
fetal bovine serum (Thermo Fisher Scientific, Waltham, MA, USA), 
penicillin (100 units/ml), and streptomycin (100 µg/ml: both from 
Sigma-Aldrich). The cells were maintained at 37°C in 5% CO2, and the 
medium was changed every 3 days. 

The cell differentiation assay was performed using the Rat 
Mesenchymal Stem Cell Functional Identification Kit (R & D Systems, 
Inc., Minneapolis, MN, USA), according to the manufacturer’s 
protocol. The cells were finally stained with Oil Red-O solution (Wako 
Pure Chemical Industries, Osaka, Japan) for 15 min or with Alizarin 
Red-S solution (Sigma-Aldrich) for 30 min.

Cell culture under hypoxic conditions

rMSCs were seeded (2 × 104 cells/cm2) onto a culture dish for 24 
h. Then, the cells were cultured under normoxic (21% partial pressure 
of oxygen [pO2]) or hypoxic (10%, 5%, 2%, or 1% pO2) conditions in 
a hypoxic chamber. After a 24 h culture, the cells were collected in 
phosphate-buffered saline (PBS).

Reverse transcription and real-time polymerase chain 
reaction (PCR) 

Total RNA was extracted with NucleoSpin® RNA (MACHEREY-
NAGEL GmbH & Co. KG, Düren, Germany) according to the 
manufacturer’s protocol. cDNA was synthesized with ReverTra Ace-α- 
(Toyobo Co., Ltd., Osaka, Japan). Real-time PCR was performed 
using a 7500 Real-Time PCR system (Applied Biosystems, Carlsbad, 
CA, USA) and the Fast Start Universal Probe Master (Roche, Basel, 
Switzerland) according to the manufacture’s protocol. Real-time PCR 
was performed using oligonucleotide primer sets corresponding to the 
cDNA sequences of rat carbonic anhydrase IX (Car9), adrenomedullin 
(Adm), Bdnf, Gdnf, Vegf, b-cell leukemia/lymphoma 2 protein (Bcl2), 
and Bcl2-associated X protein (Bax). Beta actin (Actb) was used as an 
endogenous control.

Surgical procedure and cell transplantation

Adult male SD rats (weight, 150-250 g) were used for constructing 
a spinal-contusion model using a weight-dropping method [28]. The 
rats were anesthetized, and a midline linear incision was made over 
the thoracic (Th) 9-11 spinous processes. The laminae of Th9-11 
were exposed by dissecting the bilateral paraspinal muscle laterally. 
A laminectomy was carried out at Th10. A brass cylinder (10 g) was 
dropped onto an impactor rod that rested on the surface of the spinal 
cord at Th10. A spinal contusion was made with a force of 50 g/cm. 
Following the injury, the skin was sutured to close the lesion. SCI rats 
received passive joint motion exercises daily to prevent hind limb 
joint contracture after the surgical procedure. Prophylactic antibiotics 
were administered for 5 days postoperatively, and their bladders were 
expressed manually twice daily until sufficient recovery of autonomic 
bladder function. The rats were divided into the following three 
groups according to the treatment received: transplantation of MSCs 
cultured under normoxic conditions (N-MSC); transplantation of 
MSCs cultured under hypoxic (1% pO2) conditions for 24 h (H-MSC); 

and only PBS administration (Ctrl). Rats in the N-MSC and H-MSC 
groups were injected the conditioned MSCs (5 × 105 cells/300 µl PBS) 
intravenously 24 h after surgery.

Motor functional analysis 

The inclined plane test and the Basso-Beattie-Bresnahan locomotor 
rating scale (BBB scale) were used to evaluate hind limb function. As 
reported previously, the inclined plane test assesses the maximum angle 
at which the animal can maintain its position for 5 s on an inclined 
plane [29]. The BBB scale is a 22-point scale that systematically and 
logically follows recovery of hind limb function, and ranges from a 
score of 0, indicative of no observed hind limb movement, to a score 
of 21, representative of a normal ambulating rodent [30]. Motor 
functional analyses were performed before SCI and on days 0-7, 10, 14, 
and 21 after SCI.

Spinal cord tissue sampling and mRNA expression analysis of 
the spinal cord lesion site

The rats were anesthetized 24 h after MSC transplantation. Spinal 
cord tissues were removed and soaked in RNA Later (Sigma-Aldrich). 
Total RNA was extracted from injured spinal cord segments (2 mm 
centered on the lesion site). RNA extraction and reverse transcription 
were performed as described above. Real-time PCR was performed 
using oligonucleotide primer sets corresponding to the cDNA 
sequences of rat Bdnf, Gdnf, Bcl2, Bax, beclin 1 (Becn1), interleukin-1 
beta (Il1b), interleukin-10 (Il10), tumor necrosis factor alpha (Tnfa), 
and tumor necrosis factor receptor superfamily, member 1A (Tnfrsf1a). 
Actb was used as an endogenous control.

Preparation of rMSC conditioned medium and NG108-15 
cell culture

rMSCs were seeded onto a culture dish and maintained in growth 
medium. After reaching 80% confluent, medium was changed to fresh 
growth medium and cells were cultured in normoxic (21% pO2) or 
hypoxic (1% pO2) condition. 24 h after exposed to normoxic or hypoxic 
conditions, the culture medium were collected from both culture 
conditions as Conditioned Medium (CM). After 0.2 µm filtration, 
N-MSC-CM and H-MSC-CM were stored at -80°C. 

NG108-15 (ECACC, Porton Down, UK) neural cells were cultured 
in Dulbecco’s. Modified Eagle’s medium with high glucose (DMEM-H) 
(Sigma-Aldrich Co.) supplemented with 10% FBS (Thermo Fisher 
Scientific), penicillin (100 units/ml), streptomycin (100 µg/ml: both 
from Sigma-Aldrich), and HAT supplement (Thermo Fisher Scientific). 
The cells were maintained at 37°C in 5% CO2. 

Oxidative or inflammatory stress exposure to NG108-15 and 
cell death assay

NG108-15 cells were exposed to oxidative or inflammatory stress 
to evaluate the neuroprotective effect of N-MSC-CM or H-MSC-CM. 
Growth medium of rMSCs (absence of rMSCs culture) was used as a 
control. H2O2 (Santoku Chemical Industries, Tokyo, Japan) was used 
to mimic an oxidative stimulus to cells [31]. Lipopolysaccharide (LPS) 
(Wako pure chemical industries, Osaka, Japan) was used to mimic an 
inflammatory stimulus to cells [9]. As preliminary experiment, NG108-
15 cells were cultured in different concentrations of H2O2 or LPS to 
determine optimal condition, and 500 µM H2O2 and 200 ng/ml LPS 
were determined as optimal condition for stress exposed experiment 
(Supplementary Figure S1A and  S1B). NG108-15 cells were seeded 
onto culture dish (Sumitomo Bakelite Co.) and maintained in growth 
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those in the Ctrl group (Figure 3A). Gdnf mRNA expression tended 
to be higher in the H-MSC group, but not significant (Figure 3B). The 
autophagy-associated marker, Becn1 was also significantly higher in 

medium. The medium was changed to fresh rMSCs growth medium 
(Ctrl), N-MSC-CM, or H-MSC-CM (with 500 µM H2O2 or 200 ng/
ml LPS) 48 h after seeding. The cells were collected and centrifuged 
24 h after exposure to stress. The cells were centrifuged, suspended in 
PBS, and cell survival rate was determined with a counting chamber 
(Sunlead Glass Corp., Saitama, Japan) using trypan blue stain, and the 
remaining cells were collected for the mRNA expression analysis.

mRNA expression analysis of stress exposed NG108-15 cells

Total RNA was extracted from the NG108-15 cells samples and 
reverse transcription was performed as described above. Real-time 
PCR was performed using oligonucleotide primer sets corresponding 
to the cDNA sequences of rat Bcl2, Bax, Becn1, and Tnfrsf1a. Actb was 
used as an endogenous control.

Statistical analysis

Data were evaluated using one-way analysis of variance (ANOVA) 
with the Bonferroni test for mRNA expression analysis. Two-way 
ANOVA with the Bonferroni test was used for the motor functional 
analysis. Statistical analyses were performed using the JSTAT software 
(Sato, Japan). A p-value <0.05 was considered significant. 

Results
Differentiation potential of rMSCs

The differentiation potential of the isolated rMSCs into adipocytes 
and osteoblasts was estimated to identify as the MSCs. Before 
differentiation, rMSCs were negative for specific staining (Oil Red-O 
and Arizarin Red-S staining), but positive cells were observed after 
differentiation (data not shown). 

Effects of hypoxic culture conditions on growth factor or 
apoptotic-associated mRNA expression

rMSCs were cultured under five different conditions to determine 
the optimal oxygen level. Expression of the known hypoxia inducible 
genes, Car9 and Vegf increased significantly only under the 1% pO2 
condition compared with that under the normoxic condition (Figure 
1A and 1B). Adm also showed tendency to increase under the 1% pO2 
condition, although this was not significant (Figure 1C). No differences 
in expression levels of Bdnf, Gdnf, and the Bax/Bcl2 ratio, an apoptotic 
indicator, were observed among those conditions (Figure 1D-1F).

Behavioral recovery of spinal cord injured rats

We assessed motor function using the inclined plane test and the 
BBB scale to compare the functional benefits of N-MSC and H-MSC 
transplantation after SCI. As a result, rats in the H-MSC group 
demonstrated more significant improvements on the inclined plane 
test than those in the Ctrl group at 14 and 28 days after injury (Figure 
2A). The BBB scale also showed that the H-MSC group rats seemed 
to improve more compared with those in the other groups, although 
the differences were not significant (Figure 2B). Rats in the N-MSC 
group seemed to improve motor functions, but the differences were not 
significant.

Effects of hypoxia-preconditioned MSCs transplantation on 
mRNA expression of the spinal cord lesion site

In order to clarify the role of transplanted H-MSC in spinal cord 
lesion site, mRNA levels of neurotrophic factor, inflammatory, or 
apoptotic genes were evaluated. The Bdnf mRNA expression level was 
significantly higher in the spinal cords of rats in the H-MSC group than 

Figure 1: Oxygen level-dependent mRNA expression of MSCs, mRNA 
expression levels of Car9 (A), Vegf (B), Adm (C), Bdnf (D), Gdnf (E), and Bax/
Bcl2 (F). Data are mean ± SE of independent experiments (p<0.05, n=4).

Figure 2: Effect of H-MSC transplantation on motor functional improvement, 
Results of the inclined plane test (A) and the BBB score (B). Data are mean ± 
SE. *Group H-MSC vs. group Ctrl (p<0.05, n=4).
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Discussion
In the present study, we investigated whether hypoxia-

preconditioned MSCs had a neuroprotective effect in vitro and in 
vivo, and demonstrated that hypoxia preconditioning was an effective 
strategy for SCI in cell-based therapy using MSCs.

Although previous studies have reported the hypoxic culture 
conditions for preconditioning of cell-based therapy [17-19], the 
optimal culture conditions remain unknown. In this study, Car9 and 
Vegf expression increased significantly in rMSCs under the 1% pO2 
hypoxic condition compared with that under the normoxic condition. 
Car9 is a hypoxia-induced protein involved in pH regulation and a 
target gene of hypoxia-inducible factor-1 (HIF-1), which is one of the 
master regulator in hypoxic response [32]. Vegf is also a well-known 
hypoxia-inducible gene, and important for signalling migration of 
endothelial cells and induction of angiogenesis [25]. Our results suggest 

rats in the H-MSC group than those in the Ctrl and N-MSC groups 
(Figure 3C). On the other hand, no differences in the Bax/Bcl2 ratio 
or the inflammatory-associated markers, Il1b, Il10, Tnfa, and Tnfrsf1a 
were observed (Figure 3D-3H).

Survival rate and mRNA expression of stress-exposed NG108-
15 cells

In order to estimate paracrine effects of H-MSC, effects of 
conditioned medium of MSC on stress induced cell death of neural cell 
were evaluated. As a result, the survival rate of NG108-15 cells exposed 
to oxidative or inflammatory stress was significantly higher in cells in 
the H-MSC-CM than those in the N-MSC-CM or Ctrl (Figure 4). 

mRNA expression in NG108-15 cells exposed to oxidative or 
inflammatory stress was analyzed. The Bax/Bcl2 ratio in the oxidative 
stress exposed NG108-15 cells was significantly lower in cells cultured 
in H-MSC-CM than those in N-MSC-CM or the Ctrl, (Figure 5Aa), but 
no differences was observed among the three groups in inflammatory 
stress exposure experiment (Figure 5Ba). On the other hand, Becn1 
expression was significantly higher in H-MSC-CM than that in the 
Ctrl in both experiments (Figure 5Ab and 5Bb). Furthermore, Tnfrsf1a 
expression level in the inflammatory stress exposed NG108-15 cells 
was significantly lower in cells cultured in H-MSC-CM than that in 
N-MSC-CM and the Ctrl, and its expression level was significantly 
lower also in cells cultured in N-MSC-CM, compared to those in the 
Ctrl (Figure 5Bc).

Figure 3: mRNA expression levels in the spinal cord lesion site, mRNA 
expression levels of Bdnf (A), Gdnf (B), Becn1 (C), Bax/Bcl2 (D), Il1b (E), 
Il10 (F), Tnfa (G), and Tnfrsf1a (H). Data are mean ± SE of independent 
experiments (p<0.05, n=4).

Figure 5: mRNA expression levels of stress exposed MSCs (A) mRNA 
expression of Bax/Bcl2 (a) and Becn1 (b) in MSCs exposed to oxidative 
stress. (B) mRNA expression of Bax/Bcl2 (a), Becn1 (b), and Tnfrsf1a (c) in 
MSCs exposed to inflammatory stress. Data are mean ± SE of independent 
experiments (*p<0.05, **p<0.01, n=8).

Figure 4: Effect of conditioned medium on survival rate of stress exposed 
NG108-15 cells, Survival rate of NG108-15 cells exposed to oxidative stress 
(A) and inflammatory stress (B). Data are mean ± SE of independents 
experiments (*p<0.05, **p<0.01, n=8).
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receptor superfamily [53]. Previous studies have shown that both 
TNF and the TNF receptor are upregulated after nerve injury [54,55]. 
Moreover, Wang et al. reported that MSCs inhibit LPS-stimulated 
signaling in hepatic stellate cells [56]. In this study, H-MSC-CM may 
suppress inflammatory signal and upregulate Becn1 expression, which 
prevented death of NG108-15 cells exposed to inflammatory stress.

Although previous studies reported that MSCs transplantation 
reduces lesion volume and promotes functional improvement of central 
nervous system disorders including SCI [5-7], we did not observe 
significant motor functional improvement with N-MSC transplantation 
in this study. We have also reported therapeutic effect of neural stem cell 
transplantation in brain injury model [34]. In this study, we could find 
effective improvement of motor functions with half number of H-MSC 
transplantation compared to our previous study using mice model, but 
did not that with N-MSC. Optimization of MSCs transplantation must 
be necessary in next step to reach future clinical trial.

Conclusion
We here provide novel evidence that hypoxia-preconditioned MSCs 

accelerated functional recovery in SCI model rats, at least through 
secretion of protective cytokines and induction of autophagy for tissue 
remodeling. Although optimization of transplantation protocol is 
needed, our results suggest that hypoxia preconditioning of MSCs is a 
useful strategy for cell-based therapy.
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