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Introduction
Flooding can have a devastating effect on whoever is in its pathway. 

Not only can flooding create a catastrophe as seen in 2005 Hurricane 
Katrina disaster in New Orleans where there were over 1100 fatalities, 
but areas of standing water invite nuisances and increase the spread 
of water-borne diseases [1-3]. Drayna et al. [4] study showed how for 
the four days after any rainfall in Milwaukee, pediatric emergencies 
significantly increased by 11% due to viral infections such as norovirus, 
rotavirus, calicivirus, enterovirus, and adenovirus. Another study by 
Carlton et al. [5] linked heavy precipitation events to cases of diarrhea, 
especially with heavy rainfall events following dry period. Children 
under 5 years of age were affected more than three times more than 
those over this age. 

Preparing for the future by focusing mitigation on areas of greatest 
potential risk is imperative as it will alleviate some of the potential 
destruction to human life and the environment. The current flood 
maps and evacuation plans are all based on past precipitation and some 
using larger scale sub-basins. For example, Yahya, Devi and Umrikar 
[6] examine flooding in Mauritius by only using digital elevation
model (DEM) and flood hydrographs to locate critical flood prone
areas. While this technique provided an estimated idea of flooding by a 
coarse sub-basin zone, it did not take into account future hydrological
conditions to see how precipitation will be dispersed at a more refined
resolution. Jalayer et al. [7] identified flooding risk hotspots for urban
and residential buildings corridors by using a maximum likelihood
method and overlaying maps of urban and residential areas corridors
and potentially flood-prone areas with geo-spatial census dataset.
Whilst this method has some merit, it failed to consider future climate
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Abstract
Deaths from flooding in the United States are preventable with the right planning maps and mitigation. This research 

is revolutionary as it forecast the most vulnerable flooding areas of higher population regions by incorporating future 
precipitation projections, soil classifications, a 3-dimensional (3-D) digital elevation model (DEM) and the Geographic 
Information System (GIS) kriging algorithmic iterative interpolation tool to determine the optimal geolocations where 
storm water drainage detention or retention and improvements should occur. Firstly, utilizing spatial tools and a global 
circulation models (GCMs), precipitation was mapped to determine high vulnerability areas for future potential flooding. 
A robust semi variogram, geospatial explanatory locations of precipitation were then parsimoniously constructed for 
a sample site in Hillsborough County, Florida. Overlaying this data on 3-D temporal geomorphological terrain related 
elevation models, high risk flooding areas were geolocated employing geospectrotemporal geospatial techniques. 
For this region, two-thirds of the precipitation occurs during the summer months; therefore, June, July and August 
were analyzed. Furthermore, just focusing on one month, e.g., August, would not take into account antecedent 
ecogeohydrology conditions which impact run off volume and flooding. Soil characteristics such as capillary action, 
permeability and drainage porosity were considered as some soils have a high water-holding saturation capacity and 
poor infiltration capability, increasing flooding. Finally, extracting forecasted slope coefficient from 3-D models were 
examined to determine if they were feasible to help extract geolocations where there is prevalent standing water during 
wet season.
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conditions or soil characteristics which could be susceptible to standing 
water and encourage waterborne diseases. Hardmeyer and Spencer [8] 
used Geographic Information System (GIS) and a risk-based approach 
to create a map to predict where and how often floods might occur in 
the future. Although this showed potential risk for structure damage if 
an average recurrence interval (percent chance of flooding) occurred, 
it failed to consider future precipitation patterns as well as optimal 
stormwater mitigation locations.

By utilizing spatial tools and a general circulation model (GCM), 
precipitation can be mapped by constructing robust semivariogram, 
geospatial locations, isolating high vulnerability areas for future potential 
flooding at a finer resolution. Pinpointing areas of risk using GIS models 
allows for more concise stormwater drainage planning and flood risk 
management. Flooding is a great concern for Tampa Bay, Florida (FL); 
therefore, it has been used as the case study. In 2005 it was rank 7th for 
economic average annual losses due to potential future flooding [9]. 
This is not surprising considering the region receives around 1.32 m of 
precipitation each year, with two-thirds of this occurring during a short 
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timeframe, from June through September which is well above the US 
annual average of 0.760 m [10,11]. Additionally, Hillsborough County 
is almost homogenously flat and low lying with locations at sea level 
to only a few areas at 30 m above sea level, promoting standing water 
and a reduce runoff rate compared to areas with steeper topography 
[12]. Soil characteristics is also an important factor promoting flooding. 
Soils that are very poorly drained are more prone to standing water and 
flooding due to a slow infiltration rate versus a moderately well drained 
soils.

What renders this research revolutionary where others have fail, 
is that it utilizes future precipitation projections, GIS and statistics 
to modeling areas at greatest risk. Applying geospectro techniques, 
3-dimensional (3-D) temporal geomorphological terrain related 
elevation models can better identify flood vulnerability high risk areas 
by overlaying precipitation and soil classes, and then focusing on these 
locations that are more densely populated. 

Materials and Methods
Downscaling and bias-correction

GCMs are available from the World Climate Research Programme’s 
Coupled Model Intercomparison Projects (CMIP) (Lawrence 
Livermore National Laboratory of the U.S. Department of Energy, 
http://www-pcmdi.llnl.gov/projects/pcmdi/). Since CMIP Phase 
5 GCMs are created at a coarse resolution, around 250 and 600 
kilometers (km), they are downscaled to support regional spatial 
resolution for hydrologic simulations required for water supply and 
management. There are multiple techniques but for this research it was 
performed using the Bias-Correction and Stochastic Analog as it is 
better fit for this study region [13,14]. The downscaled procedure also 
utilized Maurer’s nationally available precipitation data for the bias-
correction as it has been utilized by many researchers due to having 
a comprehensive data set as well as being gridded at 1/8 degree spatial 
resolution (about 12 km) supporting the required spatial scale. Beijing 
Normal University Earth System Model representative concentration 
pathway 4.5 (BNU_ESM_rcp45) was selected for this cases study. 
Representative concentration pathway (RCP) 4.5 is in the middle of the 
range for the emission scenarios as the radiative forcing are stabilized 
at around 4.5 W/m2 before 2100 and extended concentration pathways 
concentrations are constant after 2150 (Figure 1) [14-16]. 

Precipitation from this GCM was downscaled to 172 locations in 
and surrounding the Tampa Bay region to provide better precipitation 
estimates for the Hillsborough County regions for 2017 through 2020 
(Figure 2). Although these are predicted for a time series it is not 
expected to 100% match the exact year to the modeled, but rather 
capture the overall statistics for the record of interest. This time period, 
summers June 2017 to August 2020, was selected as an example for 
the case study. The reason for selecting multiple consecutive months 
was to account for antecedent hydrological conditions which impact 
runoff volume and flooding. For instance, if June and July had higher 
precipitation, soil storage in the vadose zone could be saturated 
promoting more run off than infiltration. On the other hand, if June 
and July were dry, more infiltration would occur as the soil would not 
be at its saturation point [13,17-20].

Kriging
The GIS Gaussian Ordinary Kriging technique was selected to map 

the GCM precipitation data. Ordinary kriging, a stochastic model that 
uses geostatistical techniques, depends on correlation between data 
points and the spatial structure to determine the weighting values to 

estimate a value at an unknown location [20]. It was selected as it has 
the ability to take localized measures of rainfall projects across an entire 
domain employing interpolation and distance weighting factors [21]. In 
literature, Rogelis et al. [22] researched the Kriging tool and displayed 
how there was no significant differences in performance between 
individual variogram interpolation with Ordinary Kriging, and Kriging 
with external drift and pooled variogram interpolation. Bayat et al. [23] 
applied a cluster method together with Ordinary Kriging and Bayesian 
maximum entropy techniques to determine spatial deviations of mean 
annual precipitation in a watershed. Arun [24] evaluated the use of 
DEM with kriging, ANUDEM, Inverse Distance Weighted, Nearest 
Neighbor, and Spline and determined that Kriging was superior. In 
general, Kriging is defined as [25-27]:
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Where S0 is the prediction location; λi=an unknown weight for the 
measured value at the ith location; Z(Si) is the measured value at the ith 
location; and N is the number of measured values. In this research, the 
unknown precipitation value Z(S0) was a random variable located in 
(S0), where the values of neighbor’s samples (Z Si), i=1, ... , N. Z(Si) was 
also estimated as a random variable located in the interpolator Si [20].

Digital elevation model and slope
The DEMs in this researched were Aster Global DEMs obtained 

from http://earthexplorer.usgs.gov/ which have a WGS_1984 coordinate 
system and a spatial resolution of 0.00027777778 × 0.00027777778 
degrees (ASTER GDEM is a product of METI and NASA). The purpose 
of the DEM was to extract slope coefficient to determine lowest elevation 
areas. Slope is the rate of change in the x and y direction of the elevation 
which determines the magnitude and direction of the steepest gradient 
for a topographic elevation. The local slope can be defined as [28,29].
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S is the change in elevation per horizontal unit length (magnitude 
of the gradient); α is measured from west counterclockwise; and x and 
y axes represent the reference parallel and meridian.

Soil characteristics
Valuable information on permeability and whether locations are 

more prone to more standing water can be extricated from analysis of 
soils classifications and their structural compositions. Different soils 
have varied soil hydraulic conductivity, porosity, intrinsic permeability, 
saturation capacity. Understanding the types of soil and its permeability 
is vital to determining regions of possible flooding. Soil data was 
obtained from Florida Geographic Data Library, ftp1.fgdl.org [30]. 
Soils for the Hillsborough region comprise of Adamsville fine sand; 
Anclote fine sand, Archbold fine sand, Basinger fine sand, Braden fine 
sand, Candler fine sand, Cassia fine sand, Chobee loamy fine sand, 
Chobee sandy loam, Delray mucky fine sand, Duette fine sand, Eaton 
fine sand, Eaugallie fine sand, Felda fine sand, Floridian fine sand, 
Fort Meade loamy fine sand, Immokalee fine sand, Kesson fine sand, 
Malabar fine sand, Manatee loamy fine sand, Myakka fine sand, Ona 
fine sand', Pomello fine sand, Smyrna fine sand, Wauchula fine sand, 
Zolfo fine sand, arents, and astatula, among others. The dual hydrologic 
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Figure 1: IPCC’s fifth Assessment Report RCP Scenario from 2000 to 2100 [14].

groups are: A, A/D, B, B/D, C, C/D, and D. Soils of concern are ‘poorly 
drained’ and ‘very poorly drained’ soils in hydrologic groups A/D, B/D, 
C/D, and D.

Population
In order to prioritizing and focusing stormwater improvements, 

more densely populated regions with a population projections for 
regions greater than or equal to 500 people were selected. Furthermore, 
a 1 × 103 m buffer was added to these selected population locations 
since flooding can occur due to adjacent hydrologic conditions. The 
2015 population data for this study was obtained from Southwest 
Florida Water Management District, http://data.swfwmd.opendata.
arcgis.com[31].

3D modeling
Using DEM and soil statistics, a 3-D model of the study area was 

created using ArcScene, an extension of ArcGIS®. Data exhibited in 3-D 
extract multiple structural perspectives and viewpoints by expanding 
the surface data viewpoint. Creating coherent visual displays magnify 
and project areas of concern through data visualization. Layers 
elevations were converted to scene units at a factor of 0.0005. Elevation 
from the surface was floated either on the DEM, soil or precipitation 
layer, with all layers remained at a zero elevation offset.

Results
The Slope coefficients were derived for Hillsborough County via 

extraction from a DEM. Slopes ranged between 0 to 66 degrees with 
a mean around 3.9 degrees (Figure 4). In order to isolate differences, 
slopes were separated at 0.1 increments for lower degrees due to small 
elevation differences and skewness in the probability distribution 
function (Figure 3). 

Superimposing the precipitation over the DEM to find overlapping 
locations based on slope to isolate areas that are more susceptible to 
flooding was deemed not viable because the terrain is extremely flat 
(Figure 5). Without enough variability in elevations it is not a feasible 
approach to locate pockets of low lying regions surrounded by higher 
elevations that would capture water or identify zones with steep slopes 
that would promote higher runoff rates. Although this technique has 
been used for other regions to determine flooding, it was deemed not a 
suitable tool for this region due to the almost uniformly terrain [32-34].

Employing soil characteristics was found to be a more precise 
approach to improve selection of target flooding locations. For 
homogenously flat terrain, soil properties and permeability have a 
detrimental effect on standing water due to saturation and runoff 
mechanisms. 

Figure 6 portrays locations of ‘poorly drained’ and ‘very poorly 
drained’ soils. The south east region of the county in zip codes 33567, 
33594, and 33527 comprise of very poorly drained soils, which would 
be more prone to flooding. Poorly drained and well drained soils were 
located in many locations throughout the county. To further narrow 
down and isolate regions where stormwater mitigation should occur, 
a 3-D model was constructed to visually evaluate the relationships 
between population, precipitation and soils.

Figure 7 exemplifies how primary target flooding regions can 
be extricated from the intersection of very poorly drained soils and 
high precipitation that are also within a 1 km buffer of areas where 
populations are estimated to be greater than or equal to 500 people. 
Precipitation is the most crucial flooding factor. The semi variogram 
successfully summarized the spatial continuity of the precipitation for 
each month, providing feasible spatial interpolation results (Figure 8).

Furthermore, the regression model was able to effectively classify 
high and low areas of precipitation at and surrounding Hillsborough 
County per respective month (Figure 9). The highest cumulative 
monthly precipitation occurred in July 2020 with a maximum value 
around 284.6 mm and a mean of 213.8 mm. It trailed a very wet June 
with a mean precipitation of 209.7 mm, and was followed by a very dry 
August with 68.4 mm. If flooding was to strike, it would more than 
likely occur during July since soil conditions would have been saturated 
or near saturation from high June precipitation. On average, the wettest 
month was August 2017 with a maximum of 246.9 mm and a mean of 
226.9 mm (Table 1). Majority of the highest precipitation was seen in 
the eastern half of the county in zip codes 33572, 33573, 33578, 33579, 
33584, 33592, 33594, 33596, 33598, 33617, 33619, 33637, and 33647. 
This followed a June and July with mean precipitation of 112.2 mm and 
104.7 mm, respectively (Table 1).

It is feasible that flooding would happen in August since the amount 
of precipitation is well above the mean, plus it is probable that soil could 
be at or near saturation due to the precipitation conditions of prior 
months. Other instances where the mean precipitation was above 200 
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Figure 2: Downscaled and bias-corrected modeled precipitation locations for BNU_ESM_rcp45 GCM.

 

Figure 3: Sample site in Hillsborough County, FL showing slope elevations.
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Figure 4: Spread of the slope coefficients.

 
Figure 5: Snap shot of a 3-D model with August 2017 Precipitation data overlaid a DEM of Hillsborough County, FL.
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Figure 6: Locations of poorly drained or very poorly drained soils in Hillsborough County, FL.

 
Figure 7: Snap shot of a 3-D model with population greater than 500, and August 2017 Precipitation data overlaid on poorly draining soils in Hillsborough County, FL.
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Figure 8: Example Semivariogram (August 2017).

 

Figure 9: Estimated precipitation over Hillsborough County, FL based on BNU_ESM_rcp45 GCM (June, July and August from 2017 to 2020).
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Figure 10: Estimated precipitation over Hillsborough County based on 1km buffer around areas where the population is greater than 500 people and where soil type is 
poorly draining or very poorly draining (June, July and August from 2017 to 2020).

2017 2018 2019 2020
Units: 10-3m June July Aug June July Aug June July Aug June July Aug

Min 85.2 95.0 186.4 183.1 192.0 63.2 183.5 110.4 27.5 132.9 189.9 63.4
Max 133.0 118.6 246.9 229.1 243.3 100.3 248.6 179.3 53.5 201.9 284.6 79.3

Mean 112.2 104.7 226.9 209.7 224.0 82.6 213.4 126.1 42.9 165.0 213.8 68.4
Standard Deviation 14.4 6.6 18.9 8.7 14.3 9.7 20.4 15.8 7.6 15.0 19.9 3.0

Table 1: Precipitation statistics by month for all interpolated locations.
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Figure 11: Final Result Example -- Zoomed in on August 2017.
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mm were June and July, 2018; June 2019; and July 2020 which are visually 
displayed in Figure 9. The last step of this process was to combine soils, 
precipitation by month, and population with a 1 km buffer to extricate 
prioritized areas for focusing storm water mitigation efforts. Figure 10 
provides areas of concern for each month. For six out of the 12 months, 
summers June 2017 thru August 2020, zip code 33647 had estimated 
precipitation greater than 200 mm per month and soil was either poorly 
draining or very poorly draining. Due to this higher rate, this would 
be considered the first primary target for mitigation. Following this, 
there were four zip codes with these same precipitation and soil criteria 
that occurred in five of the months. These were 33578, 33579, 33598, 
and 33619. Additionally, zip codes 33511, 33544, 33559, 33569, 33572, 
33573, 33584, 33592, and 33637 met these criteria on four occasions. 
Budget depending, these locations could be prioritized accordingly. 
Figure 11 is an example extracted from Figure 10 to provide a closer 
visual of one of the month results. The locations west of Hillsborough 
Bay in red have the highest cumulative monthly precipitation, greater 
than 225 mm. Furthermore, these high precipitations fall over zip codes 
33567, 33594, and 33527 which have very poorly drained soils and are 
more prone to standing water and flooding. Areas in bright purple 
have monthly precipitation between 200 to 225 mm, and locations in 
yellow are between 175 to 200 mm. Unshaded locations within the 1 km 
Population buffer are where soils do not match the criteria and where 
planning efforts should not be focused.

Conclusion
Using a combination of predicted precipitation over a time period, 

soil characteristics and population provided a feasible approach to 
determine locations of potential concern. In this study, a prioritized 
zip code list where drainage improvements should occur were 
evaluated; however, it is also plausible to extract locations at the street 
level. Locations of probable future flooding were successfully isolated 
which can be used to promote improved management of funding and 
available resources. To isolate smaller locations, reduced population 
and buffers can be employed as well as longer periods of record. Finally, 
for predominately homogenous terrain slope coefficients was not the 
ideal tool to determine locations of flood vulnerability to target storm 
water mitigation.

As with any study, there were limitations. Since the GCM was 
supplied, there were not as limited downscaled and bias-correction 
precipitation data for locations south and east of Hillsborough County. 
Furthermore, to create an even more robust and refined model, 
potentiometric surface parameter, a larger time period, impervious 
versus non-impervious surfaces and evaluation of other GCMs with 
alternate RPCs can be added to provide enhanced predicted results. 
Additionally, the rate of precipitation was not considered but could be 
added to future studies.
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