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Abstract

Aspirin-exacerbated respiratory disease (AERD) is characterized by severe asthmatic attack after taking aspirin
and/or nonsteroidal anti-inflammatory drugs (NSAIDs). The typical patient with AERD is an adult who develops
refractory chronic rhinitis in the third or fourth decade of life. Natural history and clinical features of AERD indicates
that during the evaluation of chronic rhinitis persistent bronchial asthma develops, and finally after exposure to
NSAID acute respiratory reactions begin to occur. The inhibitory action of aspirin and/or NSAIDs on cyclooxygenase
activity may cause diversion to the 5-lipoxygenase pathway, which leads to the overproduction of cysteinyl
leukotrienes (LTs). Thus, a general consensus exists that increased levels of cysteinyl LTs are key inflammatory
mediators in AERD. As aspirin intolerance is found in a specific population, genetic predisposition has been
considered as a crucial determinant. Investigations on candidate genes have been concentrated especially on
cysteinyl LTs-related genes, however conflicting results have been reported. So, future areas of investigations need
to focus on comprehensive approaches towards other genetic biomarkers. We’ve recently reported possible
presence of other gene polymorphisms in Japanese patients with AERD. The natural history and clinical
characteristics of AERD indicate that the respiratory mucosal inflammatory process in AERD begins and continues
in the absence of ongoing or even intermittent exposure to NSAIDs. So, in this review, we propose a hypothetical
progress of AERD over time based on mainly the results of our investigations, and present a schematically sketching
the course of NSAIDs-triggered hypersensitivity with genes, such as asthma-associated genes, that may initiate
susceptibility to AERD, and that may accelerate pathogenesis and induce onset of AERD. The findings of our
studies were based on small-sized samples from a Japanese population, and future validation studies in
independent populations are required to provide reassurance about our hypothesis.
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disease; AERD

Introduction
Aspirin-exacerbated respiratory disease (AERD), so-called aspirin-

intolerant asthma, is an acute asthmatic attack due to ingestion of
aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs).
Although precipitation of asthma attacks by ingestion of NSAIDs is
considered a hallmark of the syndrome, the respiratory mucosal
inflammatory disease process begins and continues in the absence of
ongoing or even intermittent exposure to NSAIDs. It is more
commonly found in non-atopic, middle-aged females who develop
refractory chronic rhinitis [1]. During the evolution of chronic rhinitis
persistent asthma develops, and finally after exposure to NSAIDs acute
respiratory reactions begin to occur [2]. Stevenson and his colleagues
reported that typical patient with AERD begins in the third or fourth
decade of life, the average age at onset was 34 years old, and 57% were
female patients. The disease progressed over the 13 years between
historical onset and current evaluation. In fact, 33% of the patients had
previously reacted on two occasions to NSAIDs and 36% on more than
three occasions to NSAIDs, whereas only 27% had reacted to one

NSAID and developed asthma attacks [3]. The mechanisms underlying
the development of this specific asthma phenotype have not yet been
fully understood.

Aspirin intolerance is found in a specific population, and genetic
predisposition is considered a crucial determinant for the development
of AERD. The inhibitory action of aspirin and NSAID on
cyclooxygenase (COX) activity may cause diversion to the 5-
lipoxygenase pathway leading to the overproduction of cysteinyl
leukotrienes (LTs) [4]. Thus, investigations of LT-related genes have
been undertaken to explore the genetic determinants of AERD. LTC4
synthase promoter polymorphism has been shown to be associated
with AERD [5,6]. Several investigations suggested the genetic
polymorphisms of 5-lipoxygenase promoter [7] and cysteinyl LT
receptor 1 promoter [8] may be risk factors for susceptibility to AERD.
However, conflicting results have been reported [9,10]. Interestingly,
Higashi et al. [11] demonstrated that prostaglandin D2 (PGD2), a
major prostanoid synthesized by activated human mast cells, was
overproduced during aspirin-induced bronchial obstruction, and no
differences in the levels of lipoxygenase products have been found in
blood from patients with AERD and those with aspirin-tolerant
asthma (ATA) [12].
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In this review, we described on the recent investigations of AERD in
a Japanese population from our laboratory [13-19]. The natural history
and clinical characteristics of AERD indicate that the respiratory
mucosal inflammatory process in AERD begins and continues in the
absence of ongoing or even intermittent exposure to NSAIDs. So, in
this review, we propose a hypothetical progress of AERD over time
based on mainly the results of our investigations, and present a
schematically sketching the course of NSAIDs-triggered
hypersensitivity with genes, such as asthma-associated genes, that may
initiate susceptibility to AERD, and that may accelerate pathogenesis

and induce onset of AERD. All studies were performed with the
approval of the Institutional Ethics Committee and written informed
consent from each individual before prior to beginning of the study.
DNA in the specimens obtained by rubbing buccal mucosa with a
cotton swab was extracted by using QIAamp 96 DNA blood kits
(Qiagen, Hilden, Germany). The target DNA sequence of each single-
nucleotide polymorphism (SNP) was amplified using a set of primers
as shown in Table 1, and allelic discrimination assay for the target SNP
relating to the expression of each gene polymorphism was carried out
as described [13-19].

Gene name SNP (rs number) Forward primer sequence Reverse primer sequence

TSLP -5717C>T (rs1837253) 5’-GGTTACTTTGTAAAAGATCC-3’ 5’-GGTTACTTTGTAAAAGATCC-3’

TSLP -82C>T (rs2289276) 5’-CTCTGGAGCATCAGGGAGAC-3’ 5’-CAATTCCACCCCAGTTTCAC-3’

CYP2C19*2 681G>A (rs4244285) 5’-TTTCCCACTATCATTGATTATTTCC-3’ 5’-TCTCCATTTTGATCAGGAAGC-3’

CYP2C19*3 636G>A (rs4986893) 5’-TGAAAACATCAGGATTGTAAGCAC-3’ 5’-ATATTCACCCCATGGCTGTC-3’

HSPA1B -179C>T (rs6457452) 5’-ATATTCACCCCATGGCTGTC-3’ 5’-ATATTCACCCCATGGCTGTC-3’

HSPA1B +1267A>G (rs1061581) 5’-ATATTCACCCCATGGCTGTC-3’ 5’-GGGTTGATGCTCTTGTTCAG-3’

TBXA2R +795T>C (rs11085026) 5’-GAGTGGACCCTGGATCTCAA-3’ 5’-CCACGCGCAAGTAGATGAG-3’

CRTH2 -466T>C (rs634681) 5’-GAGCTGCATGGAGGATCTGT-3’ 5’-AGGACTCCTTTTTCCCATCC-3’

ADRB2 Arg16Gly (rs1042713) 5’-AGCCAGTGCGCTCACCTGCCAGACT-3’ 5’-GCTCGAACTTGGCAATGGCTGTGA-3’

IL-13 -1111C>T (rs1800925) 5’-TGGGGGTTTCTGGAGGAC-3’ 5’-GCAGAATGAGTGCTGTGGAG-3’

IL-13 Arg110Gln (rs20541) 5’-GGTCCTGTCTCTGCAAATAATG-3’ 5’-GTTTTCCAGCTTGCATGTCC-3’

IL-17A -737C>T (rs8193036) 5’-CCCCCATCATGTCTCCTCTCC-3’ 5’-CCAAGCAACTTGGTGTTTTGAGG-3’

SLC6A12 Intron 2 A>T (rs499368) 5’-TGCTGACTCAGATGTCAACCTG-3’ 5’-ATGAGGCACCCTGAGAAATG-3’

SLC6A12 Exon 4 T>C (rs557881) 5’-TCTTCCCACCAGGCTTTG-3’ 5’-TCCAACTTCTCTCCCTCCTC-3’

Table 1: Primers used for allelic discrimination and genotyping in our studies.

Asthma-associated Genes

Thymic stromal lymphopoietin (TSLP) genes
TSLP is produced from several cells, including epithelial cells,

stromal and muscular cells [20-22]. Levels of human TSLP messenger
RNA and protein [23,24] have been reported to be increased in the
airways of asthmatic patients compared to controls, and the magnitude
of this expression correlate with the disease severity [23,24].

The gene for TSLP is located on human chromosome 5q22 [25]. In
large population studies, a SNP (rs1837253) 5.7 kb upstream of the
TSLP transcription start site was shown to be associated with asthma
[26,27]. Two SNPs in TSLP gene (rs1837253 and rs2289276) were
associated with asthma in a sex-specific fashion in Costa Rican
population [28]. The genome-wide association studies identified TSLP
gene as a susceptibility loci associated with asthma [29]. TSLP
promoter polymorphisms were also shown to be associated with
disease susceptibility in both childhood atopic and adult asthma in a
Japanese population [30]. These data suggest that differential
regulation of TSLP expression may influence on susceptibility to
bronchial asthma.

To our knowledge, no studies have evaluated the gene association of
TSLP with AERD. Therefore, we hypothesize that TSLP gene
polymorphism might be involved in the susceptibility to AERD, and
analyzed TSLP -5717C>T and TSLP -82C>T gene polymorphisms in
Japanese patients with AERD. Very recent our report [13] showed the
frequency of the minor T allele of TSLP -5717C>T genotype in ATA
patients was significantly higher than that in normal controls
(P=0.020), and this result corresponds to the reports which showed
evidence for association of a TSLP variant with asthma [26,27].
Interestingly, the frequency of the minor T allele of TSLP -5717C>T
genotype in patients with AERD was also significantly higher than that
in normal controls (P=0.002). The frequency of the minor T allele of
TSLP -82C>T genotype did not differ among AERD patients, ATA
patients and normal controls. Analysis of the frequencies of the
combined TT/CT genotype group and CC genotype showed no
significant differences in the genotype frequencies between AERD
patients and ATA patients both in TSLP -5717C>T and TSLP -82C>T
genotypes. Overall, these findings suggest that the TSLP gene may
present itself as a good candidate involved in the development of
asthma, however it is unlikely to be associated with susceptibility to
AERD in Japanese subjects.
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AERD is well known to be associated with higher incidence in
female [1]. On the other hand, it has been reported that TSLP gene
polymorphisms were associated with asthma in a sex-specific fashion
in Costa Rican population [28]. Namely, the T allele of rs1837253 was
significantly associated with a reduced risk of asthma in males,
whereas the T allele of rs2289276 was significantly associated with a
reduced risk of asthma in females [28], suggesting gender might
modify the role of TSLP in asthma. So, subgroup analyses with gender
of the multivariable logistic regression analysis were performed using
the two SNPs (rs1837253 and rs2289276) in our study. However, the

frequencies of the combined TT/CT genotype group and CC genotype
in these SNPs showed no difference between AERD patients and ATA
patients both in TSLP -5717C>T and TSLP -82C>T genotypes.

We were the first to analyze TSLP -5717C>T and TSLP -82C>T gene
polymorphisms in patients with AERD, however our data did not show
an association between two SNPs in the TSLP gene region and AERD
susceptibility in Japanese subjects, suggesting TSLP -5717C>T and
-82C>T gene sequence variations may not have a role in the
development of AERD, but in asthma (Table 2).

Gene name SNPs (rs number) Gene polymorphism Clinical finding in AERD

Asthma-associated genes

TSLP -5717C>T (rs1837253) No difference between AERD and ATA

TSLP -82C>T (rs2289276) No difference between AERD and ATA

Genes that may initiate susceptibility to AERD

CYP2C19*2 681G>A (rs4244285) Frequency of GA/AA genotype is higher than that of
GG genotype in AERD

Lower FEV1 in AERD with GA/AA genotype

CYP2C19*3 636G>A (rs4986893) Frequency of GA/AA genotype is higher than that of
GG genotype in AERD

Lower FEV1 in AERD with GA/AA genotype

HSPA1B -179C>T (rs6457452) Frequency of CT/TT genotype is higher than that of
CC genotype in AERD

Prevalence of haplotype [C-A] of the tow
SNPs is higher in AERD

HSPA1B +1267A>G (rs1061581) Frequency of GG genotype is higher than that of
GA/AA genotype in AERD

Significant variance in peripheral blood
eosinophil count according to association
with the two SNPs in AERD

Genes that may accelerate pathogenesis and induce onset of AERD

TBXA2R +795T>C (rs11085026) Frequency of CC/CT genotype is higher than that of
TT genotype in AERD

Frequency of CC/CT genotype is higher in
female AERD

CRTH2 -466T>C (rs634681) Frequency of TT genotype is higher than that of
CC/CT genotype in AERD

Frequency of TT genotype is higher in
female AERD

ADRB2 Arg16Gly (rs1042713) Frequency of ArgArg homozygote is higher than that of
ArgGly/GlyGly genotype in AERD

Frequency of ArgArg homozygote is higher
than that of ArgGly/GlyGly genotype in
female AERD

IL-13 -1111C>T (rs1800925) Frequency of TT/CT genotype is higher than that of
CC genotype in AERD

Lower FEV1 in AERD with CC genotype

IL-13 Arg130Gln (rs20541) No difference between AERD and ATA

IL-17A -737C>T (rs8193036) Frequency of CC genotype is higher than that of
TT/CT genotype in AERD

Lower peripheral blood total eosinophil count
in AERD with CC genotype

SLC6A12 Intron 2 A>T (rs499368) No difference between AERD and ATA

SLC6A12 Exon 4 T>C (rs557881) Frequency of CC/TC genotype is higher than that of
TT genotype in AERD

Lower FEV1 in AERD with CC/TC genotype

Table 2: Genetic candidates for aspirin-exacerbated respiratory disease (AERD) based on the results of our studies.

Genes that may Initiate Susceptibility to AERD

Cytochrome P450 (CYP) genes
Polymorphisms of the CYP genes, including CYP2C9 and

CYP2C19, have major consequences on the metabolism of a variety of
drugs. NSAIDs are metabolized by CYP2C9 in vitro, and the CYP2C9
genotype was considered to be a relevant risk factor for side effects.

However, the CYP2C9 genotype has no clinically meaningful effect on
the pharmacokinetics of NSAIDs [31-33].

The CYP2C19 gene is located on chromosome 10, and two major
SNPs are known to make the enzyme activity nonfunctional [34,35].
One is CYP2C19*2 at position 681 in exon 5 (681 G>A), and the other
is CYP2C19*3 at position 636 in exon 4 (636 G>A). The polymorphism
of this enzyme is leads to patient classification into 3 distinct groups:
rapid metabolizer (RM: *1/*1), intermediate metabolizer (IM: *1/*X)
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and poor metabolizer (PM: *X/*X; *1 and *X represent the wild-type
and mutant allele, respectively).

The association between the CYP2C19*2 polymorphism and
inflammatory maker concentrations has been reported, and the
polymorphism of the CYP2C19 gene might be considered to be a new
candidate for cardiovascular risks through inflammation [36].
CYP2C19 has endogenous substrates, including arachidonic acid (AA),
such as hyrdoxyeicosatetraenoic acids (HETEs) [37]. Mastalerz et al.
extended to the analysis of eicosanoids in exhaled breath condense and
showed that the amount of 15-HETE was higher in AERD patients
than in ATA patients [38]. Therefore, we hypothesized that the
CYP2C19 gene polymorphism might be involved in the susceptibility
to AERD.

Our paper [14] showed that the frequencies of 2 alleles, *2 and *3,
were higher than those of the *1 allele in AERD patients compared to
those both in ATA patients and controls (P<0.001). The frequencies of
PM (*2/*2, *2/*3, *3/*3) were higher than those of RM (*1/*1) and IM
(*1/*2, *1/*3) in AERD patients compared to those in ATA patients
(P<0.001). The frequencies of IM and PM were higher than those of
RM in AERD patients compared to those in ATA patients (P=0.001).
The frequencies of PM were higher than those of RM and IM in AERD
patients compared to those in controls (P<0.001). The frequencies of
IM and PM were higher than those of RM in AERD patients compared
to those in controls (P<0.001).

The frequencies of the combined GA/AA genotype group of
CYP2C19 681G>A gene were higher than those of GG in AERD
patients compared to those in ATA patients (P=0.001), and the
frequencies of the combined GA/AA genotype group of CYP2C19
636G>A gene were higher than those of GG genotype in AERD
patients compared to those in ATA patients (P<0.001). The
comparison of the clinical characteristics according to CYP2C19
681G>A and 636G>A gene polymorphisms in AERD patients showed
that percent predicted FEV1 in AERD patients with the GG genotype
of each CYP2C19 gene were higher than that in the patients with the
combined GA/AA genotype group (P<0.001).

CYP2C19 has been known to be highly implicated in the metabolic
turnover of AA, and the functional enzyme product of the CYP2C19*1
oxygenates AA to various HETE metabolites, even though the
relevance of the CYP2C19 polymorphism in the production of AA
metabolites in the inflammation-linked diseases has been poorly
documented. Recently, the association between the CYP2C19*2 allele
and inflammatory maker concentrations has been reported [36]. We
first investigated the frequencies of the CYP2C19 681G>A and
CYP2C19 636G>A genotype in AERD patients with our hypothesis
that this mutant allele could also be involved in a defect in AA
metabolism, leading to its accumulation and thus indirectly to the
inflammatory reaction in patients with AERD. Indeed, a specific
aspirin-triggered enhancement of 15-HETE generation from nasal
polyp epithelial cells and peripheral blood leukocytes from patients
with AERD, but not from patients with ATA, has been demonstrated
[39-41].

CYP2C19*2 allele has been shown to be associated with higher
platelet aggregability [42], which may modify thromboxane (TX)
production from platelets. Literally from the late 1970’s, possible
involvements of platelets in AERD have also been proposed using
isolated human platelets [43-46]. Concerning about possible
involvement of platelet in AERD and also in asthma in general, we’ve
reported a few investigations from our laboratory [47,48]. However, we

have not yet investigated the genes in isolated platelets from AERD
patients. On the other hand, it has been demonstrated that aspirin led
to a significant decrease in serum TXB2 levels in patients with
persistent asthma, who were underwent an oral aspirin challenge to
ensure they exhibited no features suggestive of aspirin intolerance [49].
Thus, taking the reports mentioned above into consideration, our data
suggest that CYP2C19 gene polymorphism profiles may initiate the
susceptibility to AERD (Table 2).

Heat shock protein (HSP) genes
HSP, of which the HSP70 family is best understood, responds to a

variety of stressful stimuli by augmentation of its intracellular HSP
gene expression [50] and subsequent inhibition of pro-inflammatory
cellular functions [51].

There are three genes in the HSP70 family HSPA1A, HSPA1B and
HSPA1L, located adjacent to each other in the class III region of the
major histocompatibility complex (MHC) (chromosome 6p21.3) [52].
The two intronless genes, HSPA1A and HSPA1B, encode an identical
protein [53]. Both genes are expressed at high level in cells upon heat
shock, with HSPA1A also expressed constitutively at very low levels
[52].

A prospective cohort study of community-acquired pneumonia
found that carriage of the AA homozygotes of HSPA1B1267A>G gene
was associated to a significantly greater risk of developing septic shock
[54]. As HSPA1B1267A>G is a silent mutation, it is likely that another
polymorphic site is responsible for the changes in biological function
that explain the disease association. In fact, HSPA1B1267A>G and
HSPA1B-179C>T were found to be in linkage disequilibrium [54].
Temple et al. [55] investigated the promoter region of HSPA1A and
HSPA1B in healthy whites and Asians, and demonstrated
HSPA1B-179C>T is in linkage disequilibrium with HSPA1B1267A>G,
and HSPA1B-179C>T affects HSP70 production, suggesting
HSPA1B-179C>T as a key determinant of individual susceptibility to a
variety of inflammatory diseases. The data were sub-analyzed by race,
and the same associations were observed in whites and Asians. They
also suggested HSPA1B-179C>T:1276A>G haplotype is functional and
may explain the association of the HSP70 gene with development of
septic shock [56]. Thus, we hypothesized HSPA1B-179C>T and
1267A>G gene polymorphisms might be involved in the susceptibility
to AERD.

The results of our investigation [15] showed that AERD patients
showed higher frequencies of combined CT/TT genotype group of the
HSPA1B-179C>T than those of CC genotype compared to ATA
patients (P<0.001), and higher frequencies of GG genotype of the
HSPA1B1267A>G than those of combined GA/AA genotype group
compared to ATA patients (P<0.001). On the basis of the linkage
disequilibrium (LD) coefficient (D’=1.000) between the two genotype
SNPs in normal controls in our study, we inferred the haplotype
frequencies and showed that the prevalence of haplotype [C-A] was
significantly higher in AERD patients than in ATA patients (P<0.001).
Among the hematological characteristics investigated, a significant
elevation in peripheral blood total eosinophil count was present in
AERD patients according to the association of HSPA1B-179C>T and
HSP1267A>G gene polymorphisms, but not in ATA patients,
indicating the association with HSPA1B-179C>T and 1267A>G gene
polymorphisms may be involved in the susceptibility to AERD.

We demonstrated that the prevalence of haplotype [C-A] was
significantly higher in AERD patients than in ATA patients. While
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studies investigating the levels of translated protein still need to be
performed, the A allele of HSPA1B1267 has been shown to be in
linkage with the C allele of the HSPA1B179 which is associated with
lower levels of HSP70 gene expression [54]. So, a lower production of
intracellular HSP70 may have a minimal effect on inhibiting pro-
inflammatory cellular functions potentially involved in AERD. Our
work did not describe the mechanisms linking the HSP70 gene
genotype and a significant elevated peripheral blood total eosinophil
count according to the association of the two SNPs in AERD patients.
However, we can propose several possibilities as follow.

Investigations with cultured cells have demonstrated NSAIDs can
potentiate heat-induced HSP70 expression [57], however the use of
NSAIDs has recommended to be carefully monitored in cancer
patients undergoing hyperthermic treatment [58,59]. On the other
hand, Mortatz et al. [60] demonstrated that NSAIDs induced HSP70
from bone marrow-derived mast cells, which was closely paralleled
with inhibition of tumor necrosis factor (TNF) production. It has also
been demonstrated that aspirin-induced release of HSP70 from mast
cells results in cell activation through Toll-like receptor pathway [61].
Interestingly, individuals with the haplotype containing the sepsis-
associated genotype, HSPA1B-179*C:HSPA1B1267*A, have been
reported to decrease expression of HSP70 in mononuclear cells and
increase production of TNF [56]. TNF is a well-known
proinflammatory cytokine released from inflammatory cells including
mast cells [62,63], and is increased in asthmatic airways [64]. As the
HSP genes lie in the MHC class III region [52], it is possible that
linkage of HSPA1B-179C>T with other polymorphisms in this region
and the adjacent TNF genes may account for some of the functional
associations. Many articles have indicated that mast cells may be
involved in the pathogenesis of AERD [65-67] including that by
Higashi et al. [11], and the results of our study may suggest a role of
mast cells in AERD through aspects of HSP70 as proposed [68]. In
fact, protein microassay analysis of nasal polyps from AERD patients
showed a greater expression of HSP70 than that from ATA patients
[69]. Taking these reports into consideration, our data suggest that
HSP70 gene polymorphism profiles may initiate the susceptibility to
AERD (Table 2).

Genes that may Accelerate Pathogenesis and Induce Onset of
AERD

Prostanoids-related genes
The TBXA2 receptor (TBXA2R) gene exists on chromosome

19p13.3, and conflicting results about the genetic alteration of
TBXA2R in the involvement of asthma have been reported. A positive
association between the TBXA2R polymorphism and the development
of atopy and asthma has been reported [70], but another report [71]
showed that the TBXA2R polymorphism was not associated with
asthma susceptibility. The synonymous +924T>C polymorphism in the
TBXA2R gene has been reported to be associated with a diagnosis of
asthma in adults [72], however this claim of an involvement of
TBXA2R in asthmatics did not seem to be substantiated [73,74].

The gene of the human chemoattractant receptor expressed on type
2 helper T cells (CRTH2), a receptor for PGD2, is located on
chromosome 11q13, and genetic alteration of CRTH2 has been
associated with allergic asthma in African-American and Chinese
populations [75]. However, no association has been found between any
polymorphisms or haplotypes in the CRTH2 gene and asthma in the
Japanese population [76]. So, we hypothesized that TBXA2R and

CRTH2 gene polymorphisms might be involved in pathogenesis of
AERD.

Our study [16] showed that the frequencies of the combined CC/CT
genotype group of the TBXA2R +795T>C were significantly higher
than those of the TT genotype in AERD patients compared to those in
ATA patients (P=0.015,). The frequencies of the combined CC/CT
genotype group of the TBXA2R +795T>C were significantly higher
than those of the TT genotype in female AERD patients compared to
those in female ATA patients (P=0.013). The frequencies of the TT
genotype of the CRTH2 -466T>C in AERD patients were significantly
higher than those of the combined CC/CT genotype group compared
to those in ATA patients (P=0.034). The frequencies of the TT
genotype of the CRTH2 -466T>C in female AERD patients were
significantly higher than those of the combined CC/CT genotype
group compared to those in female ATA patients (P=0.046).

Investigations of the association between AERD susceptibility and
prostanoid gene polymorphisms in a Korean population have shown
that, among three SNPs of the TBXA2R gene investigated, the
+795T>C polymorphism was only associated with AERD susceptibility
[77,78]. Also, another Korean study showed that AERD patients
exhibited a significantly higher frequency of the TT genotype of
CRTH2 -466T>C polymorphism compared to that in ATA patients
[79], which may correspond to our results, and they [79] showed that
AERD patients carrying the TT genotype of CRTH2 -466T>C
polymorphism showed a significantly higher eotaxin-2 level compared
to patients with CT and CC genotypes. Notably, an agonistic effect of
indomethacin on a CRTH2 has been reported [80].

ß2-adrenergic receptor (ADRB2) genes
ADRB2 is encoded by intronless gene, which is located on

chromosome 5q31-32 [81]. It contains several reported SNPs [82],
including Arg16Gly (A46G, rs1042713), Gln27Glu (C79G, rs1042714)
and Thr164Ile (C491T, rs1800888) [83-85]. Although the ADRB2 gene
is not considered to be a major susceptibility gene for asthma, it has
been suggested that its variant alleles may play a role in intermediate or
asthma-associated phenotypes [86], such as airway hypersensitivity
[87], asthma severity [88] and response to specific medications [89].

As shown in the previous reports about the genotype frequencies of
the ADRB2 gene in Asian populations the allelic frequency of
Gln27Glu polymorphism of the ADRB2 gene is less prevalent among
Japanese than in Caucasian population, and the frequency of Arg16
allele is similar to that observed in Caucasian population [90]. So, we
hypothesized that ADRB2 gene polymorphisms might differ between
AERD patients and ATA patients.

We [17] reported that the frequencies of wild-type ArgArg were
significantly higher than those of variant-type ArgGly/GlyGly
genotype in AERD patients compared to those with ATA patients
(P<0.001). In AERD patients, frequencies of wild-type ArgArg in both
female and male patients were significantly higher than those of
variant-type ArgGly/GlyGly genotype in male patients compared to
those with ATA patients (P<0.001 in female and P=0.007 in male,
respectively). Also, in AERD patients, frequencies of wild-type ArgArg
in female patients were significantly higher than those of variant-type
ArgGly/GlyGly genotype in female patients compared to those with
ATA patients (P=0.002).

A study from Korea indicated a possible interaction of four loci
including Arg16Gly genotype and cysteinyl LT receptor 1 promoter
genotype in AERD patients [91]. Therefore, taking all into account, the
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interactions with ADRB2 polymorphisms and overproduction of
cysteinyl LTs may accelerate pathogenesis of AERD (Table 2).

Cytokine genes
Interleukin-13 (IL-13) is well known to be involved in eosinophilia

and airway hyperresponsiveness [92]. On the other hand, it has been
demonstrated that human type 2 helper T cells (TH17 cells) express
IL-13 α1-receptor and that IL-13 attenuates IL-17A production [93].
The IL-13 gene is located on chromosome 5q31-33, a region frequently
linked to asthma [94,95]. Two of the most characterized SNPs in IL-13
include a promoter SNP (-1111C>T) and a coding SNP in exon 4
(Arg130Gln). The IL-13 Arg130Gln polymorphism is associated with
an elevated eosinophil count and high total serum IgE levels [96-98].
Functional studies support a regulatory role associated with allergic
inflammation for the -1111C>T variant [98,99].

The IL-17A gene is located on chromosome 6q12.1, a genomic
region associated with different types of asthma [100-102]. A study on
the association between asthma susceptibility and IL-17A gene
polymorphisms in a Taiwanese population has shown that among nine
SNPs investigated, only one SNP (-737C>T) was associated with
asthma, and the risk genotype of the SNP was the CC genotype [103].
So, we hypothesized that IL-13 and IL-17A gene polymorphisms might
be involved in susceptibility to AERD.

Our study [18] showed that the frequencies of the combined TT/CT
genotype group of IL-13 -1111C>T were higher than those of the CC
genotype in AERD patients compared to those with ATA patients
(P<0.001). A positive association between asthma phenotype and the
IL-13 -1111C>T genotype was found in female patients, and the
frequencies of the combined TT/CT genotype group in female AERD
patients were higher than those of the CC genotype group compared to
female ATA patients (P<0.001). No association between asthma
phenotype and the IL-13 Arg130Gln genotype was found. The
frequencies of the CC genotype of IL-17A -737C>T were higher than
those of the combined TT/CT genotype group in AERD patients
compared to ATA patients (P=0.015). A positive association between
asthma phenotype and the genotype was present in female patients,
and the frequencies of the CC genotype in female AERD patients were
higher than those of the combined TT/CT genotype group compared
to those with ATA patients (P=0.030). Comparison of the clinical
characteristics in AERD patients according to the IL-13 and IL-17A
gene polymorphisms revealed that FEV1 in the patients with the CC
genotype of the IL-13 -1111C>T gene was lower than that in the
patients with the combined TT/CT genotype group (P=0.048). AERD
patients with the CC genotype of the IL-17A -737C>T gene had a
lower peripheral total eosinophil count than did the patients in the
combined TT/CT genotype group (P=0.033).

As far as the authors investigated, only one study has reported the
association between the IL-13 gene polymorphism and AERD, the
findings of which indicated that the allele and genotype frequencies of
two promoter polymorphisms of the IL-13 -1510A>C and -1055C>T
gene, and Arg110Gln polymorphism were not associated with AERD
in a Korean population [104]. However, to our knowledge, no studies
have evaluated IL-17A gene polymorphism association with AERD. So,
with the results, we hypothesize that the interaction between IL-13
-1111C>T and IL-17A -737C>T gene sequence variations might be
involved in the process to induce allergic inflammation associated with
eosinophilic inflammation in AERD (Table 2).

Solute carrier family 6 member 12 (SLC6A12) genes
It has been revealed that betaine/gamma-aminobutyric acid

(GABA) signaling pathway in the airway epithelium plays a critical
role in asthma development through its ability to enhance mucus
production [105]. Previous studies have indicated that during the
development of allergen-induced airway responses, GABAergic system
in the airway epithelial cell acts in autocrine and paracrine fashion to
enhance mucus hyper-secretion from airway epithelial cells resulting
to airway obstruction [106,107]. Also, it has been reported that airway
remodeling and the correlation of the extraneuronal GABAergic
system might be implicated in AERD [108].

Solute carrier family 6 (neurotransmitter transporter, betaine/
GABA) member 12 (SLC6A12) gene, also referred to as sodium and
chloride-dependent betaine/GABA transporter-1, is widely expressed
in the proximal tubules of the kidney and cells of the central nervous
system [109,110]. To our knowledge, only one report has investigated
the association between SLC6A12 gene polymorphisms and AERD.
Namely, two SNPs (rs499368 and rs557881) in SLC6A12 gene were
significantly associated with AERD in a Korean population [111]. So,
we sought to partly replicate the association between SLC6A12 gene
and AERD patients in a Japanese population.

We [19] showed the frequency of the T allele of the intron 2 A>T
genotype in AERD patients was significantly higher than that in
normal controls (P=0.009). Also, the frequency of the C variant allele
of the exon 4 T>C in AERD patients was significantly higher than that
in ATA patients and normal controls (P=0.010 in ATA patients and
P=0.009 in normal controls, respectively). The frequencies in the
combined TT/AT genotype group of SLC6A12 intron 2 A>T were not
different from the AA genotype in AERD patients compared to those
with ATA patients. On the other hand, the frequencies in the combined
CC/TC genotype group of SLC6A12 exon 4 T>C were significantly
higher than those of the TT genotype in AERD patients compared to
those with ATA patients (P=0.021). Subgroup analyses with gender of
the SLC6A12 genotype were shown the positive association between
asthma phenotype and the SLC6A12 exon 4 T>C genotypes in male
AERD patients. Finally, the comparison of the clinical characteristics
in AERD patients according to the SLC6A12 gene polymorphisms
revealed that FEV1 in patients with the combined CC/TC genotype
group of the SLC6A12 exon 4 T>C was significantly lower than that in
the patients with the TT genotype (P=0.039), suggesting the SLC6A12
exon 4 T>C genotype may be one of the determinant factors for the
severity of AERD, and inducing onset of AERD (Table 2).

Our results may correspond to the paper from Korea [111], which
reported the minor allele frequencies of two polymorphisms (rs499368
and rs557881) were significantly higher in AERD patients than in ATA
patients, and the translation of the amino acid change from T
(cysteine) to C (arginine) in rs557881 polymorphism. Therefore,
taking our present data into account, we may suggest these variants
might be involved in the onset of aspirin hypersensitivity in asthmatics.
Although our work did not describe the mechanism linking the
SLC6A12 exon 4 T>C genotype and onset of AERD, we may propose
some possibilities. Namely, cysteine is an amino acid with a non-polar
side chain that contains uncharged functional groups as physiological
pH and groups incapable of participating in hydrogen bonding,
whereas arginine is an amino acid with a polar side chain that contains
groups that are either charged at physiological pH or groups that are
able to participate in hydrogen bonding. So, modification of cysteine
and replacing the guanidine group with a urea linkage in the side chain
of arginine could be a risk factor for aspirin hypersensitivity in
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asthmatics. Interestingly, it has been reported that the extraneuronal
GABAergic system might to be implicated in the mechanisms of
AERD [108], and aspirin has been shown to be involved in the
detoxification of GABAlytic picrotoxin, an antagonist for GABA type
A receptor [112]. The inhibition of picrotoxin by aspirin restores
GABA activity, suggesting such interactions with aspirin might be
present in AERD patients. Further studies are required.

Conclusion

Figure 1: Hypothetical progress of aspirin-exacerbated respiratory
disease (AERD) over time based on the results of our studies.

AERD often produces moderate-to-severe phenotype asthma. The
natural history and clinical characteristics of AERD shows that during
the evolution of chronic rhinitis persistent asthma develops, and finally
after exposure to NSAIDs acute respiratory reactions begin to occur.
Because aspirin/NSAIDs intolerance is found in a specific population,
genetic predisposition has been considered to be a crucial determinant
for the development of AERD. Although candidate studies have
concentrated on the cysteinyl LT-related genes, conflicting results have
been reported. In this review we described on the recent genetic
investigations of AERD in a Japanese population from our laboratory
as summarized in Table 2. Our data may suggest that CYP2C19 and
HSP70 gene sequence variations and these gene polymorphism profiles
may be a useful diagnostic tool in assessment of the susceptibility to
AERD patients. Thus, we propose a hypothetical progress of AERD
over time based on the results of our studies, such as asthma-
associated genes, genes that may initiate susceptibility to AERD, and
genes that may accelerate pathogenesis and induce onset of AERD
(Figure 1). The findings of our studies were based on small size samples
from a Japanese population, and further validation studies in
independent populations are required.
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