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ABSTRACT
Experts in biomechanics and human factors are often asked to opine about the cause of a slip and fall event that resulted 
in an injury. The question posed to the expert is fundamentally different than the question answered by the traditional 
engineering analysis methods. Instead of trying to predict the probability of slip given available coefficient of friction 
(aCOF) and required coefficient of friction (rCOF), the expert knows a slip occurred and is trying to make inferences 
about the causes of aCOR and rCOF. It is apparent that what links the traditional engineering approach and needs of 
the litigation expert is Bayes’ theorem. A hypothetical case study was used to illustrate how a hybrid Bayesian network 
could be developed to compute a probabilistic statement about two competing theories of injury causation, one put 
forward by the plaintiff and one by the defense. The resulting probability aligns well with the requirement that the 
expert deliver an opinion based on the civil litigation standard of “more probable than not.”
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BACKGROUND

Biomechanics has been extensively used to analyze and predict 
slip and fall events [1]. Physical parameters used include the 
available coefficient of friction (aCOF), which is a measure of the 
slipperiness of the shoe-floor interface. It is a standard quantity in 
tribology and can be measured with a variety of instruments. The 
required coefficient of friction (rCOF) is the ratio of the shear force 
to normal force acting on the floor by the person while walking 
or running. In classic deterministic biomechanical analyses, a slip 
occurs when the rCOF exceeds then aCOF. This concept has been 
extended to predict the probability of a slip by numerous authors 
[2, 3]. In the stochastic versions of the slip model, the goal is to 
predict the probability of a slip given aCOF and rCOF.

Experts in biomechanics and human factors are often asked to 
opine about the cause of a slip and fall event that resulted in an 
injury. The question posed to the expert is fundamentally different 
than the question answered by the traditional engineering analysis 
methods. Instead of trying to predict the probability of slip given 
aCOF and rCOF, the expert knows a slip occurred and is trying to 
make inferences about the causes of aCOR and rCOF. It is apparent 
that what links the traditional engineering approach and needs of 
the litigation expert is Bayes’ theorem. Bayesian network models 
have been developed for use in the evaluation and interpretation 

of evidence in criminal law [4]. Thus, Bayesian network modeling 
methods have been applied in a legal context and may be able to 
help address the problem of inferring causation in a slip and fall in 
personal injury litigation case. 

The purpose of this project was to demonstrate how to develop a 
hybrid Bayesian network model for computing the probabilities of 
two competing theories (plaintiff and defense) of the cause of a slip 
and fall injury. The probabilistic framework aligns well with the 
expectation that the expert opine based on the civil standard of 
“more probable than not.”

METHODS

Case Study

This work will be motivated by the following case study:

Plaintiff brings a civil suit against a business claiming that it failed 
to adequately maintain a walkway on its premesis, resulting in him 
slipping, falling, and fracturing his humerus. The plaintiff claims 
he was walking at a normal speed but slipped because the walkway 
was covered with a slippery fluid resembling cleaning fluid. The 
defendant claims that the walkway had been recently washed with 
water and a “no running sign” was set in front of the cleaned area. 
The defendant claims the plaintiff was running, ignoring the sign. 
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Site investigation performed by the expert months later indicated 
that the company did had the cleaning fluid on hand and a “no 
running sign.” However, the expert could not determine from 
security video or other evidence whether the sign was present at 
the time of the injury. The expert was able to measure the available 
coefficient of friction (aCOF) of the walkway made of ridged 
quarry flooring under the two conditions (wet with water only and 
with the cleaning fluid). Both the plaintiff and defendant stipulate 
there was an injury resulting from a fall, and the fall was caused by 
a slip. The contested issue the expert is asked to opine about is the 
cause of the slip.

For the purposes of this work, assume the expert has been asked by 
the retaining attorney to opine about the cause of the slip and fall. 
There are two competing hypotheses, one supporting the plaintiff 
(H

P
) and the other argued by the defense (H

D
):

H
P
: Plaintiff was walking on an excessively slippery surface, and 

the low aCOF was due to the cleaning fluid contaminant on the 
walking surface.

H
D
: Plaintiff was running on a walkway that had been recently 

washed with water only.

Development of hybrid Bayesian network model

A Bayesian network (BN) is a probabilistic graphical modeling 
method that was initially developed in artificial intelligence for 
probabilistic reasoning [5] and has been applied to a wide range of 
fields. A hybrid Bayesian network is a subclass of models that can 
incorporate both discrete and continuous probability distributions. 
A Bayesian network consists of nodes, directed edges, and node 
probability tables [6]. The network is represented as a directed 
acyclic graph, so there cannot be any directed cycles. Each node 
represents a random variable, and the directed edges encode the 
conditional independence relationships between random variables. 
Each node has an associated table that encodes the conditional 
probabilities for that node. That is, it specifies the probability of 
the random variable associated with the node taking on a specific 
value given the states of the random variables associated with nodes 
having edges incident on the node in question. Once the directed 
acyclic graph and associated node probability tables have been 
defined, calculations can be performed. The most straightforward 
calculations are in the direction of the edges because they involve 
just the law of total probability applied at each node. However, 
evidence can be entered at nodes in the graph including nodes that 
are descendants of other nodes, i.e. have directed edges pointing 
into them from other nodes. In this case the effect of this evidence 
can be propagated through the network using special algorithms. 
All of these calculation algorithms are explained in detail in [6, 7] 
and implemented in software.

The heart of this model is the slip_and_fall node at the bottom 
of Figure 1 (note that node names will be placed in italics). It 
represents a Boolean random variable that takes on a value of true 
if an only if a slip occurs (the hypothetical assumes both parties 
agree the fall was caused by a slip so the slip event is equivalent to 
a fall event). Mechanically, this is when aCOF < rCOF. The model 
implements a stochastic slip model developed by Chang [8]: 

where faCOF ( y)  and frCOF (x)  are the probability density 
functions of aCOF and rCOF, respectively. The hybrid Bayesian 
network implementation of this probabilistic slip model is based 
on the hybrid Bayesian network model implementation of Chang’s 
model [8] described in Hughes [9]. The inputs to the slip_and_fall 
node are the rCOF and aCOF nodes, and the probability table for 
that node is in Table 1. The rCOF node has a node probability table 
that is contingent on the running_as_cause node above it (Table 2). 
The aCOF node, which is also a parent of the slip node, has a 
node probability table conditional on the running_as_cause node 
(Table 3). The logic of the competing hypothesis of the plantiff 
and defense is represented in the topmost node, running_as_cause. 
This is a Boolean variable in which true represents H

D
 and false 

represents H
P
.

Table 1: Node probability table for slip_and_fall node.

Predecessor nodes: aCOF and rCOF

slip_and_fall takes on value of true if aCOF < rCOF

slip_and_fall takes on value of false if aCOF  ≥ rCOF

Table 2: Node probability table for rCOF node.

Simulation
Predecessor node: running_as_cause

False True

Lognormal LN(-1.46,0.00387) LN(-0.689,0.138)

Weibull
shape = 20.0

scale= 0.239

shape = 2.82

scale = 0.604

Table 3: Node probability table for aCOF node.

Simulation
Predecessor node: running_as_cause

False True

Lognormal LN(-0.720,0.270) LN(-0.391,0.00136)

Weibull
shape = 1.87

scale = 0.627

shape = 34.0

scale = 0.688

Table 4: Probability of running_as_cause taking on value of true.

rCOF

aCOF

Distribution Lognormal Weibull

Normal 0.729 0.762

Lognormal 0.593 0.635

Data

In reality, aCOF would be measured on-site. Because this model 
is based on a hypothetical case, data on aCOF for wet and 
contaminated ridged quarry surfaces were taken from Chang et al. 
[10]. Mean and standard deviation data for rCOF during walking 
was taken from Chang et al. [11]. Median and interquartile range 
data on rCOF during running was abstracted from Vidal et al. [12]. 
Mean and standard deviation values were estimated from Vidal et 
al.’s data using methods described by Wan et al. [13]. Parameters for 
the lognormal and Weibull distributions (Table 1) were computed 
from the means and standard deviations using custom MATLAB 
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Figure 1: Hybrid Bayesian network model of slip and fall in the presence of two competing theories of causation. The node 
running_as_cause represents the defense hypothesis (H

D
) when it takes on a value of true; a value of false corresponds to the 

plaintiff hypothesis (H
P
).

Figure 2: Distributions of aCOF and rCOF nodes when there is a flat prior for running_as_cause node.
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functions (MATLAB v. 2020b 9.9.0.1467703, The Mathworks, 
Natick, MA). Both aCOF and rCOF were modeled using lognormal 
and Weibull distributions.

Simulations

The model was solved using a naïve prior in which the running_
as_cause Boolean random variable was set to even odds. Then the 
evidence of a slip_and_fall occurring, which we know to be true 
from the description of the case, was entered at the slip_and_fall 
node. Probabilities were propagated backwards through the hybrid 
Bayesian network using the junction tree algorithm [7]. All Bayesian 
network computations were performed using AgenaRisk software 
(AgenaRisk Version 10 Desktop 6140, Cambridge, UK).

RESULTS

First, the model was used to compute the probability of a slip and fall 
given that running_as_cause was set to true (to model the hypothesis 
H

P
 without any knowledge of whether a slip and fall occurred) 

assuming rCOF and aCOF were both lognormally distributed. 
The purpose of this simulation was to provide intuition about 
how a “forward” hybrid Bayesian network model would perform. 
The result was 0.214. The simulation was repeated with running_
as_cause was set to false to simulate the case where it is known 
that the cause was walking (hypothesis H

P
 with no knowledge of 

slip and fall). The probability of slip and fall was 0.079. Then a 
“flat” or “uninformative” prior was used in the simulation (the 
probability of running_as_cause being true was set to 0.5). The 
probability of slip and fall was 0.146. A closer examination of the 
probability distributions (Figure 2) shows how aCOF was a convex 
combination of two lognormally distributed random variables (one 
for the wet condition and one for the contaminated condition). 
Similarly, rCOF was a convex combination of the distributions for 
running and walking. The weights in the convex combination were 
0.5 and 0.5 because of the flat prior.

Finally, the simulation used to inform the development of the 
expert opinion was performed. The node slip_and_fall was set to 
true to represent the knowledge that a slip and fall occurred. Bayes’ 
theorem was then used by the software to computed the probabilities 
“backwards” in the network, going against the direction of the 
directed edges. The results were that the probability of running_as_
cause taking on the value of true ranged from 0.593 to 0.762 (Table 
2) depending on the assumed distributions for aCOF and rCOF.

CONCLUSIONS

The purpose of this project was to develop a model of a slip event 
that can be used to opine about the cause of the slip in a way that 
is consistent with being asked to deliver an opinion about the 
likelihood of two competing theories (hypotheses) of causation in a 
civil case. Because the First Circuit found in Burke v. Town of Walpole 
[14], that “reasonable scientific certainty” means “more likely than 
not,” a probabilistic model is ideally suited for developing an 
opinion that should be expressed in terms of a “reasonable scientific 
certainty.” The model developed here computes the probability 
of one of two competing (plaintiff v. defendant) theories being 
correct, so it is ideally suited for developing an opinion that can 
be stated to a “reasonable scientific certainty” in a civil case. These 
simulations showed that the predicted probability of H

D
 being true 

ranged from 0.593 to 0.762. This range of values was completely 
greater than 0.5, making the opinion stated to within a “reasonable 
scientific certainty” robust.

The modeling approach proposed here addresses both aleatoric 
and epistemic uncertainty. Aleatoric uncertainty represents natural 
randomness in a process and is represented by a probability 
distribution; epistemic uncertainty refers to limited data and 
knowledge of the process and is often modeled by using alternative 
probability density functions. The stochastic slip model of Chang 
[8] explicitly addresses aleatoric uncertainty because it uses 
probability distributions to describe aCOF and rCOF. Epistemic 
uncertainty is addressed by modeling aCOF using lognormal and 
Weibull distributions and rCOF using the lognormal and Weibull 
distributions. Lognormal and Weibull distributions were selected 
because they have been used in the literature to COF data [10, 
11], and the normal distribution allows for unrealistic negative 
values. Finally, it could be argued that the assessment of epistemic 
uncertainty in a stochastic slip model is the most relevant to 
assessing the “known or potential rate of error” mentioned in 
Daubert v. Dow Merrell Dow Pharmaceuticals, Inc.

The novelty of this modeling approach can be appreciated by 
comparing it to the body of work applying Bayesian network 
modeling in law. Bayesian networks have been compared to 
Wigmore charts for the analysis of criminal cases [15]. Additional 
work has explained how Bayesian networks can be used to analyze 
and construct legal arguments in criminal contexts [16]. Many 
papers haven been published on the use of Bayesian networks in 
modeling criminal cases, with special emphasis on evidence [17]. 
Deoxyribonucleic acid (DNA) evidence has been a special area 
of application of Bayesian networks to criminal cases [18]. Papers 
specific to other types of evidence, such as gunshot residues [19], 
handwriting [20], documents [21], and glass fragments [22] have 
also been developed. 

By comparison, there are much fewer papers related to civil litigation 
and even fewer related to personal injury. Analysis of DNA to 
determine paternity using Bayesian networks [23] may support cases 
involving family law. Insurance litigation that involves arson could 
use the Bayesian network models developed for fire investigations 
[24]. Bayesian network models for employment discrimination 
[25] and public health enforcement [26] have also been reported. 
Hughes [9] is the closest to the current work, as it proposed a 
method for constructing hybrid Bayesian network models for the 
analysis of slip and fall events. However, its formulation focused on 
the analysis of a claim of negligence rather than competing plaintiff 
and defense hypothesis regarding injury causation.
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