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Case Report
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ABSTRACT
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Experts in biomechanics and human factors are often asked to opine about the cause of a slip and fall event that resulted
in an injury. The question posed to the expert is fundamentally different than the question answered by the traditional
engineering analysis methods. Instead of trying to predict the probability of slip given available coefficient of friction
(aCOF) and required coefficient of friction (rCOF), the expert knows a slip occurred and is trying to make inferences
about the causes of aCOR and rCOF. It is apparent that what links the traditional engineering approach and needs of
the litigation expert is Bayes’ theorem. A hypothetical case study was used to illustrate how a hybrid Bayesian network
could be developed to compute a probabilistic statement about two competing theories of injury causation, one put
forward by the plaintiff and one by the defense. The resulting probability aligns well with the requirement that the
expert deliver an opinion based on the civil litigation standard of “more probable than not.”

BACKGROUND

Biomechanics has been extensively used to analyze and predict
slip and fall events [1]. Physical parameters used include the
available coefficient of friction (aCOF), which is a measure of the
slipperiness of the shoe-floor interface. It is a standard quantity in
tribology and can be measured with a variety of instruments. The
required coefficient of friction (rCOF) is the ratio of the shear force
to normal force acting on the floor by the person while walking
or running. In classic deterministic biomechanical analyses, a slip
occurs when the rCOF exceeds then aCOF. This concept has been
extended to predict the probability of a slip by numerous authors
[2, 3]. In the stochastic versions of the slip model, the goal is to
predict the probability of a slip given aCOF and rCOF.

Experts in biomechanics and human factors are often asked to
opine about the cause of a slip and fall event that resulted in an
injury. The question posed to the expert is fundamentally different
than the question answered by the traditional engineering analysis
methods. Instead of trying to predict the probability of slip given
aCOF and rCOF, the expert knows a slip occurred and is trying to
make inferences about the causes of aCOR and rCOF. It is apparent
that what links the traditional engineering approach and needs of
the litigation expert is Bayes’ theorem. Bayesian network models
have been developed for use in the evaluation and interpretation

of evidence in criminal law [4]. Thus, Bayesian network modeling
methods have been applied in a legal context and may be able to
help address the problem of inferring causation in a slip and fall in
personal injury litigation case.

The purpose of this project was to demonstrate how to develop a
hybrid Bayesian network model for computing the probabilities of
two competing theories (plaintiff and defense) of the cause of a slip
and fall injury. The probabilistic framework aligns well with the
expectation that the expert opine based on the civil standard of
“more probable than not.”

METHODS
Case Study
This work will be motivated by the following case study:

Plaintiff brings a civil suit against a business claiming that it failed
to adequately maintain a walkway on its premesis, resulting in him
slipping, falling, and fracturing his humerus. The plaintiff claims
he was walking at a normal speed but slipped because the walkway
was covered with a slippery fluid resembling cleaning fluid. The
defendant claims that the walkway had been recently washed with
water and a “no running sign” was set in front of the cleaned area.
The defendant claims the plaintiff was running, ignoring the sign.
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Site investigation performed by the expert months later indicated
that the company did had the cleaning fluid on hand and a “no
running sign.” However, the expert could not determine from
security video or other evidence whether the sign was present at
the time of the injury. The expert was able to measure the available
coefficient of friction (aCOF) of the walkway made of ridged
quarry flooring under the two conditions (wet with water only and
with the cleaning fluid). Both the plaintiff and defendant stipulate
there was an injury resulting from a fall, and the fall was caused by
a slip. The contested issue the expert is asked to opine about is the
cause of the slip.

For the purposes of this work, assume the expert has been asked by
the retaining attorney to opine about the cause of the slip and fall.
There are two competing hypotheses, one supporting the plaintiff
(H,) and the other argued by the defense (H):

H,: Plaintiff was walking on an excessively slippery surface, and
the low aCOF was due to the cleaning fluid contaminant on the
walking surface.

H,: Plaintiff was running on a walkway that had been recently
washed with water only.

Development of hybrid Bayesian network model

A Bayesian network (BN) is a probabilistic graphical modeling
method that was initially developed in artificial intelligence for
probabilistic reasoning [5] and has been applied to a wide range of
fields. A hybrid Bayesian network is a subclass of models that can
incorporate both discrete and continuous probability distributions.
A Bayesian network consists of nodes, directed edges, and node
probability tables [6]. The network is represented as a directed
acyclic graph, so there cannot be any directed cycles. Each node
represents a random variable, and the directed edges encode the
conditional independence relationships between random variables.
Each node has an associated table that encodes the conditional
probabilities for that node. That is, it specifies the probability of
the random variable associated with the node taking on a specific
value given the states of the random variables associated with nodes
having edges incident on the node in question. Once the directed
acyclic graph and associated node probability tables have been
defined, calculations can be performed. The most straightforward
calculations are in the direction of the edges because they involve
just the law of total probability applied at each node. However,
evidence can be entered at nodes in the graph including nodes that
are descendants of other nodes, i.e. have directed edges pointing
into them from other nodes. In this case the effect of this evidence
can be propagated through the network using special algorithms.
All of these calculation algorithms are explained in detail in [6, 7]
and implemented in software.

The heart of this model is the slip_and_fall node at the bottom
of Figure 1 (note that node names will be placed in italics). It
represents a Boolean random variable that takes on a value of true
if an only if a slip occurs (the hypothetical assumes both parties
agree the fall was caused by a slip so the slip event is equivalent to
a fall event). Mechanically, this is when aCOF < rCOF. The model
implements a stochastic slip model developed by Chang [8]:

PUSTiPY= [ frope ()| Fror ()dlidc
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where faCOF(y) and frCOF (x) are the probability density
functions of aCOF and rCOF, respectively. The hybrid Bayesian

network implementation of this probabilistic slip model is based
on the hybrid Bayesian network model implementation of Chang’s
model [8] described in Hughes [9]. The inputs to the slip_and_fall
node are the r*COF and aCOF nodes, and the probability table for
that node is in Table 1. The rCOF node has a node probability table
that is contingent on the running_as_cause node above it (Table 2).
The aCOF node, which is also a parent of the slip node, has a
node probability table conditional on the running_as_cause node
(Table 3). The logic of the competing hypothesis of the plantiff
and defense is represented in the topmost node, running_as_cause.
This is a Boolean variable in which true represents H, and false
represents H .

Table 1: Node probability table for slip_and_fall node.

Predecessor nodes: aCOF and rCOF
slip_and_fall takes on value of true if aCOF < rCOF
slip_and_fall takes on value of false if aCOF = rCOF

Table 2: Node probability table for rCOF node.

Predecessor node: running_as_cause
Simulation
False True
Lognormal LN(-1.46,0.00387) LN(-0.689,0.138)
shape = 20.0 shape = 2.82
Weibull
scale= 0.239 scale = 0.604

Table 3: Node probability table for aCOF node.

. ) Predecessor node: running_as_cause
Simulation
False True
Lognormal LN(-0.720,0.270) LN(-0.391,0.00136)
shape = 1.87 shape = 34.0
Weibull
scale = 0.627 scale = 0.688

Table 4: Probability of running_as_cause taking on value of true.

| rCOF

‘ Distribution Lognormal Weibull
 aCOF Normal 0.729 0.762

| Lognormal 0.593 0.635

Data

In reality, aCOF would be measured on-site. Because this model
is based on a hypothetical case, data on aCOF for wet and
contaminated ridged quarry surfaces were taken from Chang et al.
[10]. Mean and standard deviation data for rCOF during walking
was taken from Chang et al. [11]. Median and interquartile range
data on rCOF during running was abstracted from Vidal et al. [12].
Mean and standard deviation values were estimated from Vidal et
al.’s data using methods described by Wan et al. [13]. Parameters for
the lognormal and Weibull distributions (Table 1) were computed
from the means and standard deviations using custom MATLAB
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Figure 1: Hybrid Bayesian network model of slip and fall in the presence of two competing theories of causation. The node

running_as_cause represents the defense hypothesis (H) when it takes on a value of true; a value of false corresponds to the

plaintiff hypothesis (H,).
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Figure 2: Distributions of aCOF and rCOF nodes when there is a flat prior for running_as_cause node
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functions (MATLAB v. 2020b 9.9.0.1467703, The Mathworks,
Natick, MA). Both aCOF and rCOF were modeled using lognormal
and Weibull distributions.

Simulations

The model was solved using a naive prior in which the running
as_cause Boolean random variable was set to even odds. Then the
evidence of a slip_and_fall occurring, which we know to be true
from the description of the case, was entered at the slip_and_fall
node. Probabilities were propagated backwards through the hybrid
Bayesian network using the junction tree algorithm [7]. All Bayesian
network computations were performed using AgenaRisk software

(AgenaRisk Version 10 Desktop 6140, Cambridge, UK).
RESULTS

First, the model was used to compute the probability of a slip and fall
given that running_as_cause was set to true (to model the hypothesis
H, without any knowledge of whether a slip and fall occurred)
assuming TCOF and aCOF were both lognormally distributed.
The purpose of this simulation was to provide intuition about
how a “forward” hybrid Bayesian network model would perform.
The result was 0.214. The simulation was repeated with running_
as_cause was set to false to simulate the case where it is known
that the cause was walking (hypothesis H, with no knowledge of
slip and fall). The probability of slip and fall was 0.079. Then a
“flat” or “uninformative” prior was used in the simulation (the
probability of running_as_cause being true was set to 0.5). The
probability of slip and fall was 0.146. A closer examination of the
probability distributions (Figure 2) shows how aCOF was a convex
combination of two lognormally distributed random variables (one
for the wet condition and one for the contaminated condition).
Similarly, rCOF was a convex combination of the distributions for
running and walking. The weights in the convex combination were
0.5 and 0.5 because of the flat prior.

Finally, the simulation used to inform the development of the
expert opinion was performed. The node slip_and_fall was set to
true to represent the knowledge that a slip and fall occurred. Bayes’
theorem was then used by the software to computed the probabilities
“backwards” in the network, going against the direction of the
directed edges. The results were that the probability of running as_
cause taking on the value of true ranged from 0.593 to 0.762 (Table
2) depending on the assumed distributions for aCOF and tCOF.

CONCLUSIONS

The purpose of this project was to develop a model of a slip event
that can be used to opine about the cause of the slip in a way that
is consistent with being asked to deliver an opinion about the
likelihood of two competing theories (hypotheses) of causation in a
civil case. Because the First Circuit found in Burke v. Town of Walpole
[14], that “reasonable scientific certainty” means “more likely than
not,” a probabilistic model is ideally suited for developing an
opinion that should be expressed in terms of a “reasonable scientific
certainty.” The model developed here computes the probability
of one of two competing (plaintiff v. defendant) theories being
correct, so it is ideally suited for developing an opinion that can
be stated to a “reasonable scientific certainty” in a civil case. These
simulations showed that the predicted probability of H | being true
ranged from 0.593 to 0.762. This range of values was completely
greater than 0.5, making the opinion stated to within a “reasonable
scientific certainty” robust.
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The modeling approach proposed here addresses both aleatoric
and epistemic uncertainty. Aleatoric uncertainty represents natural
randomness in a process and is represented by a probability
distribution; epistemic uncertainty refers to limited data and
knowledge of the process and is often modeled by using alternative
probability density functions. The stochastic slip model of Chang
[8] explicitly addresses aleatoric uncertainty because it uses
probability distributions to describe aCOF and rCOF. Epistemic
uncertainty is addressed by modeling aCOF using lognormal and
Weibull distributions and rCOF using the lognormal and Weibull
distributions. Lognormal and Weibull distributions were selected
because they have been used in the literature to COF data [10,
11], and the normal distribution allows for unrealistic negative
values. Finally, it could be argued that the assessment of epistemic
uncertainty in a stochastic slip model is the most relevant to
assessing the “known or potential rate of error” mentioned in
Daubert v. Dow Merrell Dow Pharmaceuticals, Inc.

The novelty of this modeling approach can be appreciated by
comparing it to the body of work applying Bayesian network
modeling in law. Bayesian networks have been compared to
Wigmore charts for the analysis of criminal cases [15]. Additional
work has explained how Bayesian networks can be used to analyze
and construct legal arguments in criminal contexts [16]. Many
papers haven been published on the use of Bayesian networks in
modeling criminal cases, with special emphasis on evidence [17].
Deoxyribonucleic acid (DNA) evidence has been a special area
of application of Bayesian networks to criminal cases [18]. Papers
specific to other types of evidence, such as gunshot residues [19],
handwriting [20], documents [21], and glass fragments [22] have
also been developed.

By comparison, there are much fewer papers related to civil litigation
and even fewer related to personal injury. Analysis of DNA to
determine paternity using Bayesian networks [23] may support cases
involving family law. Insurance litigation that involves arson could
use the Bayesian network models developed for fire investigations
[24]. Bayesian network models for employment discrimination
[25] and public health enforcement [26] have also been reported.
Hughes (9] is the closest to the current work, as it proposed a
method for constructing hybrid Bayesian network models for the
analysis of slip and fall events. However, its formulation focused on
the analysis of a claim of negligence rather than competing plaintiff
and defense hypothesis regarding injury causation.
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