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Abstract
Quiescence conserves the properties of stem cells whilst they are dormant. The mechanisms associated with 

dormancy involve various cell regulators. Here, the effects of hyaluronan (HA; a polysaccharide associated with the 
extracellular matrix), on the mesenchymal stem cell cycle and the involvement of p130 and E2F family proteins in 
mesenchymal stem cell cycle regulation, were evaluated. Placenta-derived mesenchymal stem cells (PDMSCs) were 
cultured on either a normal tissue culture surface (TCS) or a surface coated with HA. Cell population percentages at 
the G0/G1, S, and G2/M phases were analyzed 36, 40, 44, 48, and 50 h post-seeding using flow cytometry. At 36 h, 
HA-treated cells had more PDMSCs in the G0/G1 phase (61.59% versus 43.61% in the TCS group). At and 48 and 50 
h for the HA and TCS groups, respectively, PDMSCs had highly similar population distributions in cell cycle phases; 
thus, these cells were used to study cell cycle regulators. Pocket proteins (p130, p107, and pRb), E2F family proteins 
(E2F3, E2F4, and E2F5), using sand the binding of p130 to E2F4 and DP1 were analyzed with western blots and co-
immunoprecipitation. The HA group at 48 h exhibited increased p130 and E2F4 protein expression compared with the 
TCS group at 50 h (4.3-fold and 1.5-fold, respectively), and the binding of p130 to E2F4 and DP1 was detected 36, 
48, and 50 h post-seeding. In this studyHence, a the HA-regulated formation of a p130/E2F4 complex was observed 
in PDMSCs, which provides to suggests that the mesenchymal stem cell cycle is regulated by HA as an extracellular 
matrix.
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Introduction
Stem cells possess the capacity for self-renewal, differentiation, and 

to act as precursors for somatic cells [1]. In humans, stem cells can be 
classified as embryonic or adult, which are further classified into specific 
types such as hematopoietic, mesenchymal, neural, limbal, intestinal, 
and hair follicle stem cells. Most adult stem cells are multipotent [2,3]. 
In vivo, stem cells are preserved in a dormant or quiescent state for 
long periods until they are required for further cell differentiation [4]. 
Because of their favorable properties, which include self-renewal and a 
lack of immune responsiveness, stem cells are a major source for cell-
based tissue engineering and regenerative medicine [5].

Stem cells reside in the microenvironment known as the stem 
cell niche, which provides stem cell growth factors, extracellular 
matrices (ECMs), and niche cells for structural support and signaling 
transmission [6,7]. Hyaluronan (HA) is a major component of both 
the hematopoietic and mesenchymal stem cell niche, and is widely 
distributed in the connective, epithelial, and neural tissues [8]. 
HA is produced by hyaluronan synthase genes (HAS1, HAS2, and 
HAS3) [9-11]. HA have a linear conformation with non-sulfated 
glycosaminoglycans composed of D-glucuronic acid (1-β-3) and 
N-Acetyl-D-glucosamine (1-β-4) repeats [12,13]. HAS genes produce
HAs with various molecular weights during development and extrinsic 
stimuli [10] and HAs are classified into 15 types according to the
number of these repeats [14]. Furthermore, it regulates intracellular
signal transduction via its receptor CD44 and Receptor for HA-

Mediated Motility (RHAMM) [15,16]. HA has been shown to support 
and protect cells from damage, stress and oxidants and influence 
cell proliferation, differentiation, and migration [17,18]. Despite the 
apparent importance of HA, its influence on the cell cycle regulation 
of stem cells dormancy maintaining has not been comprehensively 
studied. In vivo, stem cells can be awakened from the G0 phase to 
enter cell cycle progression [4]. Our previous studies indicated that 
HA had the potential to prevent cellular senescence (an irreversible 
cell cycle arrest), to maintain stem cell differentiation potentials in 
murine adipose-derived stromal cells, and to hold mesenchymal stem 
cells in a reversible cell cycle arrested mode [19,20]. It was shown 
that the retinoblastoma (RB) family proteins, also known as pocket 
proteins (pRb, p107, and p130), regulated cell cycle exit and entry 
[21]. During cell cycle arrest, RB proteins may bind to E2F members 
to repress transcription of genes [22], including DNA replication-
related genes for G1 progression to S phase [23]. There are eight 
types of E2F genes that give rise to 10 distinct E2F proteins, and 
each E2F member targetstospecific pocket protein [24]. In general, 
un-phosphorylated RB family members bind to E2F to repress E2F-
associated gene transcription and produce cell cycle arrest [24,25]. 
Conversely, phosphorylated RB members dissociate from E2F, leading 
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to E2F-related gene transcription and G1/S cell cycle progression [26]. 
The E2F members E2F1, E2F2, and E2F3 are known to form complexes 
with heterodimer proteins (DP1 or DP2) and exclusively with pRb, 
and they repress gene transcription and cause cell cycle arrest [27,28]. 
During the G0 phase, two other E2F members, E2F4 and E2F5, bind 
preferentially to p130/DP1 and p107/DP1, respectively, to repress gene 
transcription. E2F6, E2F7, and E2F8 also form a complex with DP1; 
however, they function independently of pocket proteins in regulating 
cell cycle arrest [23,29]. E2F-repressed cell cycle genes include those 
that encode cyclin-dependent kinases (CDKs) and cyclins. The E2F/RB 
complex may be disrupted in the presence of mitogenic stimuli, which 
leads to the phosphorylation of RB, activation of CDKs and cyclins, and 
progression of the cell cycle [30]. CDK4/6 has been shown to interact 
with cyclin D to initiate RB phosphorylation and G1/S transition 
[30,31]. Furthermore, CDK2 interacts with cyclin E to promote S phase 
entry [32]. Recently, the possible role of E2F was extended by reports 
of an association with stem cell fate [26,33]. The role of the E2F/RB 
complex in progenitor cells is well-studied, and the ECM is known to 
be important for stem cell maintenance in vivo; however, the influence 
of HA as an ECM on E2F/RB has not yet been clarified.

In this study, the E2F4/RB2/DP1 complex was analyzed in 
placenta-derived mesenchymal stem cells (PDMSCs) cultured in the 
presence of HA. We found that PDMSCs cultured in the presence of 
HA had a higher cell population in the G0/G1 phase compared with 
PDMSCs cultured on a normal tissue culture surface (TCS). Where 
the population distribution of cell cycle phases was similar, PDMSCs 
cultured on a HA-coated surface exhibited increased expression of 
p130, E2F4, and E2F5 proteins compared to with PDMSCs cultured 
on a normal TCS; furthermore, p130 protein was coupled with E2F4 
and DP1.

Methods and Materials
Isolation and cultivation of PDMSCs

PDMSCs were obtained from human placentas of mothers who 
donated to our study at the National Cheng Kung University Hospital. 
Handling of the full-term placentas was approved by the Institutional 
Review Board. After removing the amnion and decidua, the chorionic 
villi were minced, washed in Hank`s balanced salt solution (Sigma-
Aldrich), and then digested with 200 U/ml of type II collagenase 
(Worthington Biochemical Corp.) in a water bath (37°C) with orbital 
shaking (100 rpm) for 30 min. The tissue mixture was sieved sequentially 
through 500- to 104- to 37-µm mesh to remove undigested fragments. 
Mononuclear cells were isolated by mixing with 1.073 g/cm3 Percoll 
(GE Healthcare), and subsequently centrifuged at 900 × g for 30 min 
at 4°C. They were seeded at a density of 3 × 104 cells/cm2 in Dulbecco’s 
modified Eagle’s medium-low glucose (Gibco) supplemented with 
10% fetal bovine serum (Gibco) and 100 U/ml gentamycin, and then 
incubated at 37°C in 5% CO2. After 10–14 d, colonies of PDMSCs were 
trypsinized and sub-cultured for expansion on a polystyrene TCS. For 
treatment with HA, PDMSCs were cultured on a HA-coated surface at 
P5 (otherwise indicated as P4+1 throughout the article). Cells in the 
following experiments were all assessed at P5.

Preparation of the HA-coated surface

HA solution was prepared by dissolving HA powder (MW = 1470 
kDa; Lifecore) in ddH2O (the solution was then stored at 4°C). To 
produce the HA treatment, the TCS was coated with the HA solution 
(30 μg/cm2) and allowed to dry. Subsequently, PDMSCs were seeded at 
1 × 104 cells/cm2 to assess the TCS and HA treatment groups.

Identification of mesenchymal stem cell surface markers

PDMSCs were harvested at P5 and stained with the following 
antibodies: CD9, CD13, CD29, CD44, CD45, CD73, and HLA-ABC 
(BioLegend); CD34, CD90, and CD105 (BD Pharmingen). The cell 
populations were determined by flow cytometry (FACscan; BD) and 
displayed as histograms. The results were analyzed using WinMDI2.9 
software (Purdue University Cytometry Laboratories).

Cell cycle population distribution percentage analysis

Harvested PDMSCs were fixed in ice-cold 70% ethanol at -20°C 
overnight. After cells were centrifuged at 300 × g and then washed 
three times with PBS, they were stained with propidium iodide (Sigma-
Aldrich) containing 0.5% Triton X-100 at room temperature for 1 h 
in darkness. They were then washed and re-suspended in PBS for flow 
cytometric analysis. The percentage of cells in the G0/G1, S, and G2/M 
phases was analyzed by using ModFit LT software (Verity Software 
House).

Western blots

PDMSCs were lysed for 30 min in lysis buffer with 50 mM Tris pH 
7.5, 150 mM NaCl, 0.5 mM EDTA, 1% Triton X-100, and proteinase 
inhibitor cocktail (Roche), and then spun down at 12,000 rpm for 
20 min. Proteins were separated in 10-12% gradient SDS-PAGE and 
transferred to a PVDF membrane. Blocking was performed using 5% 
skim milk in TBST (20 mM Tris, 150 mM NaCl, and 0.1% Tween 20) 
buffer at room temperature for 1 h. The following specific antibodies 
were then incubated with the proteins in blocking buffer at 4°C 
overnight: anti-E2F3, anti-E2F4, anti-E2F5, anti-p130, anti-p107, anti-
Rb, anti-DP1 (Santa Cruz Biotechnology); anti-p27kip1, anti-p21cip1, 
anti-p57kip2, anti-p-CDK2Thr160 (Cell Signaling Technology); and cyclin 
D2 (Abcam). Unconjugated antibodies were washed away with TBST 
buffer, proteins were subsequently incubated with secondary antibodies 
at 4°C for 1 h, and then they were washed once more with TBST. After 
the proteins were reacted with enhanced chemiluminescence solution 
(Millipore), LAS-4000 (GE Healthcare) was applied to determine 
protein expression.

Real-time PCR

Total RNA was extracted by using TRI reagent (Sigma-Aldrich), 
and the cDNA was synthesized with a reverse transcriptase sys-
tem (Promega). The following primer pairs were mixed with cDNA 
and SYBR Green I master mix (Roche), and fluorescence was as-
sessed using real-time PCR (Light Cycler 480; Roche): E2F3 (forward 
5´-TTGGGCACTACAGGTAGC-3´, reverse 5´-GTAATACACAA-
GGTGGCGAT-3´); E2F4 (forward 5´-TGGTGAACAAGGAG-
GCAT-3´, reverse 5´-GGAGTGAGCTGAGGACTAT-3´); E2F5 
(forward 5´-TGATCAGCAGAAGTTGTGGC-3´, reverse 5´-TGTT-
GCTCAGGCAGATTTTG-3´); p130 (forward 5´-TTGGGAATTTA-
GATGAGCGG-3´, reverse 5´- TTAGCAATAGCCTGGGTTGG-3´); 
p107 (forward 5´-GATCAGCTCCTCCTTTGTGC-3´, reverse 
5´-AAGGAGAGAGTGGTGGAGCA-3´); and pRb (forward 5´-TG-
CATGGCTCTCAGATTCAC-3´, reverse 5´-CAGACAGAA-
GGCGTTCACAA-3´).

Co-immunoprecipitation

Protein A sepharose CL-48 (1 g; GE Healthcare) was dissolved 
in 1 ml PBS containing 0.5% Triton X-100 and mixed overnight 
with rotation. After washing three times with PBS, equal amounts of 
sepharose required for each treatment were incubated with primary 
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antibodies at 4°C for 2 h with rotation. Following the removal of 
unconjugated antibodies, protein lysates were added and incubated 
for 2 h. Finally, the sepharose-lysates mixture was collected using 
centrifugation at 2,000 rpm for 3 min and then re-suspended in order 
to perform western blotting.

Preparation of p27-knockdown PDMSCs

The short hairpin RNA (shRNA; TRCN0000009857) that interferes 
with gene transcription of p27 was obtained from the National RNAi 
Core Facility in Taiwan. The pLKO.1-puro vector that contains the U6 
promoter and binds with the p27 shRNA sequence was used to form 
a lentivirus by co-transfection with pCMV-Δ8.91 and pMD-G using 
the calcium phosphate method. The viral medium was collected and 
subsequently used to infect the PDMSCs for 2 d. The PDMSCs were 
then selected by using 3 μg/ml of puromycin (MDBio). PDMSCs that 
survived selection were sub-cultured for expansion and examined for 
knockdown efficiency using western blotting.

Statistical analysis

Statistical differences were assessed by Student’s t-test. P < 0.05 was 
considered statistically significant. Data were expressed as the mean ± 
SEM (n = 3).

Results
Surface markers were unaffected in the presence of HA

To confirm the expression of surface markers on PDMSCs, CD9, 
CD13, CD29, D44, CD73, CD90, CD105, HLA-ABC, CD34 and CD45 
were analyzed using flow cytometry. PDMSCs were positive for D9, 
CD13, CD29, D44, CD73, CD90, CD105, and HLA-ABC in the TCS 
and HA groups (Figure 1A). Furthermore, PDMSCs were negative for 
CD34 and CD45 (Figure 1A).

HA maintained PDMSCs in the G0/G1 cell cycle phase

The population distributions of cell cycle phases were analyzed for 
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Figure 1: Hyaluronan retained PDMSCs in the G0/G1 phase and maintaining stem cell marker expres-
sion. (A) PDMSCs cultured for five passages (P5 for TCS and P4+1 passage for HA) were analyzed 
for mesenchymal stem cells marker expression at 36, 40, 44, 48, and 50 h post-seeding. (B) The 
PDMSCs were seeded with equal cell density and observed at 36, 40, 44, 48, and 50 h post-seeding: 
cells cultured on TCS had a fibroblastic morphology, whereas HA-treatment caused PDMSCs to 
cluster together and show different morphology of cells. (C) PDMSCs cell cycle population distribution 
percentages were analyzed to determine time points with similar cell cycle population distributions. The 
population distribution percentages of the G0/G1, S, and G2M phases were measured using Mod Fit 
software. Scale bar = 100 µm.

Figure 1: Hyaluronan retained PDMSCs in the G0/G1 phase and maintaining stem cell marker expression. (A) PDMSCs cultured for five passages (P5 for TCS and 
P4+1 passage for HA) were analyzed for mesenchymal stem cells marker expression at 36, 40, 44, 48, and 50 h post-seeding. (B) The PDMSCs were seeded with 
equal cell density and observed at 36, 40, 44, 48, and 50 h post-seeding: cells cultured on TCS had a fibroblastic morphology, whereas HA-treatment caused PDMSCs 
to cluster together and show different morphology of cells. (C) PDMSCs cell cycle population distribution percentages were analyzed to determine time points with 
similar cell cycle population distributions. The population distribution percentages of the G0/G1, S, and G2M phases were measured using Mod Fit software. Scale 
bar = 100 µm.
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PDMSCs to ensure that population distributions were approaching 
identical. Chemicals for synchronization were omitted to ensure 
the properties of stem cells were maintained. Hence, for the TCS 
and HA groups, PDMSCs at P5 and P4+1, respectively, were seeded 
and harvested at various time points without using synchronization 
chemicals. PDMSCs in the TCS group presented a fibroblastic-like 
morphology, whereas PDMSCs in the HA group formed clusters 
(Figure 1B). At 36 h, the TCS and HA groups had 43.6% and 61.6% 
of cells in the G0/G1 phase, respectively (Figure 1B). The population 
distribution among cell cycle phases was highly similar for TCS- and 
HA-based cells at 50 and 48 h post-cell seeding, respectively (TCS at 

50 h: G0/G1 55.37%, S 14.73%, and G2/M 29.91%; HA at 48 h: G0/
G1 55.52%, S 15.03%, and G2/M 29.46%). Based on these similar 
population distributions, the following experiments were conducted to 
study the cell cycle regulators (Figure 1C).

HA mediated the elevated expression of E2F4 and p130

When comparing 50 h post-seeding for TCS and 48 h for HA 
treatments, HA-based treated cells exhibited a 1.5-fold and 4.2-
fold increase in E2F4 and p130 mRNA expression, respectively, 
compared with relative expression levels in TCS-based cells (Figure 
2A). Additionally, the presence of HA led to increases in protein 
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Figure 2: E2F family and p130 protein expression was HA-dependent. (A) The expression of E2F3, E2F4, E2F5, p130, p107, and 
Rb mRNA was analyzed at 50 h for TCS-based cells and 48 h for HA-treated cells. (B) Protein lysates were harvested at 36, 48, 
and 50 h for both TCS and HA groups, and western blotting was conducted to assess E2F3, E2F4, E2F5, p130, p107, and Rb. 
Data represent the mean ± SEM from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 versus TCS.

Figure 2: E2F family and p130 protein expression was HA-dependent. (A) The expression of E2F3, E2F4, E2F5, p130, p107, and Rb mRNA was analyzed at 50 
h for TCS-based cells and 48 h for HA-treated cells. (B) Protein lysates were harvested at 36, 48, and 50 h for both TCS and HA groups, and western blotting was 
conducted to assess E2F3, E2F4, E2F5, p130, p107, and Rb. Data represent the mean ± SEM from three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 
versus TCS.
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The culture conditions to which PDMSCs were exposed, i.e., growth 
on a TCS or on a surface coated with 30 µg/cm2 HA, led to a significant 
difference in cell growth rate (Figure 5A). The slowing down of cell 
growth with HA treatment indicated that the cell cycle of PDMSCs 
was undergoing regulation. Taken all together, our results suggest that 
HA can be considered as an ECM factor that maintains PDMSCs in 
a dormant state, confirming by G0 specific via up-regulation of E2F4 
and p130 protein expression and p130 dephosphorylation (Figure 
5B). Furthermore, the PDMSCs were not released into G1/S phase 
progression, which is implied by the up-regulation of p27kip1 in HA-
treated cells (Figures 4A and 5B).

Discussion
High molecular weight HA has been reported to down-regulate 

mitogen RAC signaling and block S phase progression, whereas low 
molecular weight HA produced the reverse result [34]. The molecular 
weight of HA applied in this study was >1470 kDa; thus, it belongs 
to the high molecular weight category. From the cell cycle population 
distribution results in the present study, PDMSCs cultured on HA 
produced a higher percentage of cells in the G0/G1 phase than those 
cultured on TCS; however, the percentage of cells was similar for HA at 
48 h and TCS at 50 h for TCS and HA treatments, respectively, because 
cells proliferated at rate that was more rapid on TCS. In addition, the 
expression of mesenchymal stem cell markers indicated that HA did 
not promote cell differentiation.

When PDMSCs had similar cell cycle population distributions 
among cell cycles, mRNA expression of E2F4 and p130 was higher in 
HA-based treated cells compared with those cultured on TCS. This 
result implies that E2F4 and p130 were required at this particular stage 

expression as follows: 3-fold increase in E2F3, 6-fold increase in E2F4, 
3.4-fold increase in E2F5, and 3-fold increase in p130 compared with 
the protein expression of TCS-based cells (Figure 2B). The expression 
of p107 protein did not differ significantly between the HA and TCS 
groups, whereas Rb expression was not detected in HA-treated cells 
(Figure 2B). 

Interactions between E2F4, p130 (RB2), and DP1 were HA-
dependent

Co-immunoprecipitation was performed to study the interaction 
between p130 and E2F4. For co-immunoprecipitation of protein 
lysates with p130, equal protein amounts were loaded and anti-E2F4 
antibody was used to detect any coupling with p130. Results indicated 
that p130 formed a complex with E2F4 at 36, 48, and 50 h in the TCS 
and HA groups (Figure 3A). Likewise, the E2F4/p130 complex was 
coupled with DP1 (Figure 3B). 

Transition to G1/S was blocked in the presence of HA

In HA-treated cells, the expression of p27kip1 was 2-fold higher 
and the expression of cyclin D2 was 0.6-fold lower than that relative 
to expression in TCS-based cells (Figure 4A). The expression of the 
other G1/S phase transition regulators, p57kip1 and p21cip, did not differ 
significantly (Figure 4A). Based on these results, p27kip1 was knocked 
down to observe any changes in the expression of E2F4 and p130. 
With p27kip1 knockdown, expression of E2F4 decreased in HA-treated 
cells. Figure 4B, but levels of p130 did not decrease relative to those 
in the TCS group (Figure 4B). Furthermore, p130 up-levels in p27kip1 
knockdown cell indicated the compensation effects of p130 to block 
G1 to S transition.

A

B

C

IP p130
TCS TCSHA HA TCS HA
36h 36h 48h 48h

IP DP1
TCS

DP1

E2F4

DP1

E2F4

E2F4

p130

TCSHA HA TCS HA
36h 36h 48h 48h

50h 48h

50h 48h

TCS HA
50h 48h

P130

E2F4 E2F4

IP p130

IP DP1

IP E2F4

p130

Figure 3: HA-dependent interactions between E2F4 and p130 coupled with DP1. (A) At 36, 48, 
and 50 h post-cell seeding, PDMSC lysates were harvested, co-immunoprecipitated with 
anti-p130 antibody, separated using SDS gel, and detected using anti-p130 and anti-E2F4 
antibodies in western blots. (B) At 36, 48, and 50 h post-cell seeding, PDMSCs lysates were 
harvested, co-immunoprecipitated with anti-DP1 antibody, separated using SDS gel, and 
detected using anti-DP1 and anti-E2F4 antibodies for detection in western blots. (C) The 
interaction between p130, E2F4, and DP1 was confirmed through co-immunoprecipitation of 
the total protein lysates with anti-E2F4 antibody; anti-E2F4 and anti-p130 were then used for 
detection in western blots.

Figure 3: HA-dependent interactions between E2F4 and p130 coupled with DP1. (A) At 36, 48, and 50 h post-cell seeding, PDMSC lysates were harvested, co-
immunoprecipitated with anti-p130 antibody, separated using SDS gel, and detected using anti-p130 and anti-E2F4 antibodies in western blots. (B) At 36, 48, and 50 
h post-cell seeding, PDMSCs lysates were harvested, co-immunoprecipitated with anti-DP1 antibody, separated using SDS gel, and detected using anti-DP1 and anti-
E2F4 antibodies for detection in western blots. (C) The interaction between p130, E2F4, and DP1 was confirmed through co-immunoprecipitation of the total protein 
lysates with anti-E2F4 antibody; anti-E2F4 and anti-p130 were then used for detection in western blots.



Citation: Lin MR, Wong TY, Wu CH, Huang LLH (2016) Hyaluronan Elevates Cell Cycle Regulators P130, E2F4, and P27kip1 in Dormant Human 
Mesenchymal Stem Cells to Regulate Cell Quiescence. J Stem Cell Res Ther 6: 345. doi:10.4172/2157-7633.1000345

Page 6 of 9

Volume 6 • Issue 6 • 1000345
J Stem Cell Res Ther
ISSN: 2157-7633 JSCRT, an open access journal 

of growth, which was confirmed with western blot analysis. Previous 
studies showed that p130 was highly expressed compared with pRb 
and p107 during quiescence, and that the E2F4/p130 complex is the 
major contributor to E2F activity in quiescent cells [35,36]. E2F4 family 
proteins have been found in quiescent cells [37], which explains the 
up-regulation of E2F4 in PDMSCs in the presence of HA observed 
here. Furthermore, the stabilized E2F4/p130 complex is known to 
repress the transcription of genes targeted by E2F4 to slow down cell 
proliferation [38]. The results of the present study are consistent with 
previous observations of a HA-mediated slow-cell cycling phase in 
PDMSCs [20].

The RB family (pocket proteins) show overlapping functions 
[39], and the members may compensate for each other and alter 
their functions at different cell cycle phases [40]. A previous study 
discovered a complex that consisted of p130, termed the DREAM (DP, 
Rb-like, E2F, and MuvB) complex, which regulated cell quiescence 
[41]. Dual-specificity tyrosine (Y)-phosphorylation-regulated kinase 
1A (DYRK1A) was reported to enhance quiescence via the DREAM 
complex [39]. OfConsidering the pocket proteins assessed here, the 
lack of Rb (i.e., pRb) expression in the HA group indicated that the pRb/
E2F complex was not required in the presence of HA. Furthermore, 
because p107 expression was not significantly different in the HA 
and TCS groups, the p130/E2F4 complex was likely dominant in HA-

treated PDMSCs. Consistent with this result; G0/G1-arrested cells were 
regulated through the p130/E2F4 complex in a previous study [42]. 
Moreover, the function of p130 and E2F4 has been associated not only 
with quiescence [43] but also cell differentiation [44,45]. The p130/
E2F4 complex is known to interact with β-catenin to activate the Wnt 
pathway and promote cell differentiation [45]. The RB family proteins 
are also important for heart development [46], and p130/E2F4 plays a 
role in cell proliferation during normal development [41]. However, 
when pRb was removed, cells were immortalized [47]; in other words, 
cells were completely removed from cell cycle checkpoint regulations 
and proliferated with a lengthened S phase. Taken together, this 
evidence suggests that RB proteins have a critical role to play in stem 
cell cycle regulation [48].

CDKs are major cell cycle regulators; cyclin D2 binds to CDK4 
and CDK6, which leads to G1 phase progression from G0 [49,50]. 
Interestingly, cyclin D2 was previously reported to play a role in 
stem cell fate determination [51,52]. Consistent with this finding, 
in the present study, expression of cyclin D2 decreased and p27kip1 
increased in HA-treated cells relative to expression in TCS-based 
cells. The reduction of cyclin D2 may have led to an accumulation of 
p27kip1 in the nucleus and decreased translocation to the cytoplasm for 
degradation [53]. CDK2 was reported to bind to cyclin E to promote S 
phase progression, whereas cyclin E and CDK2 were down-regulated 
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by cyclin-dependent kinase inhibitors, e.g., p27kip1, p57kip2, and p21cip, 
to prevent S phase progression from the G1 phase. Additionally, 
p27kip1 was found to interact with p21cip to regulate quiescence in 
hematopoietic stem cells [54,55]. However, in the present study, the 
knockdown of p27kip1 did not lead to up-regulation of pCDK2 (the 
phosphorylated state of CDK2Thr160) in HA-based cells, which suggests 
that PDMSCs were persistently maintained in growth arrest due to the 
presence of HA. Conversely, the loss of p27kip1 did not lead to down-
regulation of pCDK2 in TCS-based cells, which indicates that other cell 
cycle regulators may have maintained pCDK2 activity to allow TCS-
based cell proliferation to persist. In addition, p130 expression may 
have compensated for the loss of p27kip1 in the HA group to further 
prolong the cell cycle arrest in G0/G1 [56].

It is likely that the role of HA in the stem cell niche may be to 
maintain stem cells in their most pristine state, i.e., to allow them to 
lie dormant and avoid provocative stimuli. Because of the complicated 
state of the microenvironment, the protective action of HA towards 

stem cells may be readily disrupted. Prior to the present study, the 
involvement of HA in p130/E2F4 complex formation in mesenchymal 
stem cells was unclear. We conclude that p130/E2F4 was dominant in 
HA-treated PDMSCs, and that HA not only maintained PDMSCs in a 
slow proliferating state but also regulated their cell cycle through p130/
E2F4 formation.
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