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Short Communication
Based on a large number of animal studies, surfactant protein A

plays important roles in lung innate immunity under basal conditions
and in response to various insults such as infection and oxidative
stress. SP-A interacts with the Alveolar Macrophage (AM), the sentinel
cell of innate immunity, and regulates many of its functions. These
include the ability of the AM to produce cytokines and to carry out
phagocytosis of various pathogens. Moreover, the AM proteomic
expression profile has been shown to be significantly affected by SP-A.
In a study where SP-A -/- mice were treated (or rescued) in vivo with a
single dose of human SP-A, the treatment nearly restored the AM
proteomic expression to that of the wild type [1], supporting a role of
SP-A on AM protein expression. Among the protein groups affected
were actin-related/cytoskeletal proteins, which was the major group,
proteins regulating inflammatory processes, and proteins related to
Nrf2-mediated oxidative stress. Of interest, earlier studies have also
indicated a role for SP-A in actin filament dynamics via its ability to
enhance cell migration and AM chemotaxis [2], phagocytosis [3],
other actin-dependent processes [4-6] and F-actin assembly [7]. The
actin cytoskeleton is highly regulated and dynamic, with globular (G)
and filamentous (F) actin, under the influence of many actin binding
proteins, constantly changing by polymerization, depolymerization,
branching, and remodeling, modulating inflammatory response and
oxidative stress (Figure 1).

As shown in Figure, signaling via NF-kB [8] and Nrf2 [9] can both
depend on cytoskeletal changes, indicating that SP-A-mediated
modulation of the actin cytoskeleton could have significant effects on
AM responses. Moreover, the SP-A -/- rescue experiment [1] points to
the possibility and feasibility of using SP-A as a therapeutic
intervention in lung diseases influenced by innate immunity.
Furthermore, based on animal studies [10] where small amounts of
SP-A elicited significant differences in the AM proteome, it is possible
that the SP-A amount needed may not be high, although, further
experimentation will be needed to determine optimal amount and
efficacy in the clinical setting.

However, humans, (unlike rodents) have two genes, SFTPA1 (SP-
A1) and SFTPA2 (SP-A2) with several genetic variants identified for
each SP-A1 and SP-A2 gene. These variants have been associated with
many lung diseases including neonatal diseases, such as Respiratory
Distress Syndrome (RDS) and Bronchopulmonary Dysplasia (BPD)
[11]. The SP-A1 and SP-A2 gene products have been shown to differ
in several functions related to innate immunity [12] and in surfactant-
related functions [13,14]. These differences have been reviewed
previously [12] and include differences in their oligomerization status

[13,15,16], their ability to form phospholipid monolayers [17], their
ability to bind sugars [18], and their ability to enhance the phagocytic
activity and cytokine production by the alveolar macrophages and
macrophage-like cell lines, respectively [3,19-22], as well inhibit
surfactant secretion by Type II cells [13]. In most of these cases SP-A2
appeared to exhibit higher functional activity. However, in preliminary
studies [23], we observed that SP-A1 produced a higher reduction in
surface tension than SP-A2, with no significant differences observed
between SP-A1 and SP-A that contained both SP-A1 and SP-A2.
Furthermore, in the presence of oxidative stress the activity of SP-A2
to enhance phagocytosis may be reduced more than that of SP-A1 [3],
and the SP-A2 resistance to trypsin is lower than that observed in SP-
A1 and SP-A1/SP-A2 [15]. Collectively, these observations indicate
that SP-A1 and SP-A2 may each be better for different functions in the
lung i.e. either for surfactant-related functions and/or innate
immunity. Thus, the addition of SP-A1 and/or SP-A2 in surfactant
replacement therapies may be advantageous to both groups of
functions, to innate immunity and surfactant, and in some cases and
under certain conditions one may be better than the other.

SP-A humanized Transgenic (hTG) mice, generated on the SP-A -/-
background where each hTG mouse carries a different human SP-A
variant provide models to study the in vivo functional activity of each
variant. With these mice we observed differences in the
oligomerization pattern of SP-A1 and SP-A2 confirming in vitro
findings and also observed that both SP-A1 and SP-A2 may be needed
for an extracellular form of surfactant [14]. In addition, we have
shown differences in the proteomic profile of AM derived from SP-A1
and SP-A2 hTG mice [24]. In other words, AM constitutively exposed
to different human SP-A variants in vivo exhibit different expression
profiles, and presumably this reflects different stages of functional
activity either in one or more AM functions. In fact, the protein
differences observed span several functional protein groups. Among
these there were actin-related and cytoskeletal proteins, which was the
major group of differentially regulated proteins by SP-A1 and SP-A2,
as well as proteins involved in the regulation of inflammation, and
proteins related to the Nrf2-mediated oxidative stress response [24].
As shown in Figure, remodeling of the actin cytoskeleton is central to
several AM functions. Therefore, SP-A1 and SP-A2 are likely to
differentially regulate several AM functions.

In the prematurely born infant, apart from potential exposure of the
lung to varied levels of oxidative stress, one of the major complications
is infection. Although innate immunity and the surfactant proteins
could play a significant role in this process, none of the surfactant
replacement therapies include the surfactant proteins SP-A1 and/or
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SP-A2, or SP-D [25]. Of interest, surfactant treatment of babies with
RDS defined as “simple” or with pneumonia indicated that in the latter
group, surfactant treatment was less effective [26]. In addition, after
surfactant therapy, neonates with respiratory failure and Group B
streptococcal infection, although most of them showed an
improvement in gas-exchange, this improvement was slower
compared to RDS [27]. Whether the outcome in RDS with or without
infection, or in other diseases beyond RDS [28] would or could be
better if SP-A is included in the surfactant preparations or given alone
remains to be determined. Of interest, the efficacy of surfactant in its
current form on bacterial pneumonia in preterm infants, remains an
open question. An attempt to assess randomized clinical trials for

efficacy of surfactant in late term and preterm infants with bacteria
pneumonia could not reach any conclusions one way or another at the
present time [29]. However, based on the available literature, and the
role of human SP-A1 and SP-A2 on AM functions, it is imperative that
considerations for including the surfactant proteins in existing
surfactant preparations or using them individually in the absence of
surfactant be investigated. Moreover, as noted above, SP-A1 and SP-
A2 may also contribute to surfactant-related functions and therefore
its potential therapeutic use may benefit these functions as well.
Furthermore, considerations as to whether both or which genetic
variant(s) for a given condition be used must not be overlooked. These
questions must be investigated with further experimentation.

Figure 1: A diagrammatic presentation of potential cytoskeletal/actin-mediated processes in the alveolar macrophage [AM] in response to SP-
A; the central role of cytoskeletal changes in the modulation of signaling pathways and the function of AM are shown. Our published studies
[1] show that SP-A has significant impact on the AM expression profile and specifically on the cytoskeletal/actin-related proteins. Based on
the literature cytoskeletal changes may affect several signaling processes including NF-kB [8] and Nrf2 [9]. These processes in turn via
transcriptional regulation modulate the inflammatory response and the response to oxidative stress. In addition cytoskeletal changes are key
in AM activities such as phagocytosis, motility, and cell shape. Thus, SP-A, via its ability to alter expression of cytoskeletal/actin-related
proteins in the AM, may affect several of the AM functions or responses [i.e. inflammation, oxidative stress, phagocytosis, and other]. For
example, human SP-A variants have been shown to differentially enhance the phagocytic activity of AM [3] and mice that lacked SP-A
exhibited a lower phagocytic activity and survival [10].

Because low levels of SP-A have been associated with neonatal
disease (RDS, BPD) risk, as well as with risk in adult disease (IPF) or
condition (lung trauma) [11], enhancing the expression of SP-A1, SP-
A2, or both depending on the particular functional need may be
another way to increase their levels in neonatal life. Although
individuals with lung disease have been shown to have altered levels of
SP-A, it is not known whether these reflect change in both gene
products, or just one, and if the latter, which one. Given the functional
differences between the two gene products and eventually functional
differences among the variants of each gene, it is important to have a

good understanding of the SP-A1 and SP-A2 gene-specific regulatory
mechanisms in order to guide therapeutic decision making. Although
differences in the regulation between SP-A1 and SP-A2 have been
observed in organ cultures and in cell cultures, the details of the
mechanisms are not fully understood [12]. Recent studies have
implicated regulatory protein factors [30] and miRNAs [31] in the
differential regulation of SP-A1 and SP-A2 expression. For example,
some isoforms of the 14-3-3 family of proteins are specific for the
translation of SP-A2, but not SP-A1 [30]. Whether these or other
factors can in the future be used therapeutically to differentially
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regulate specific SP-A1 and SP-A2 expression remains to be
determined.

In summary, serious consideration should be given to the question
of whether SP-A1 and SP-A2, as well as SP-D (not discussed here in
detail), should be included in surfactant replacement preparations or
be given as an individual treatment. The mouse rescue experiment [1]
discussed above for SP-A indicates feasibility and potentially a
functional benefit to the AM as shown by changes in the cytoskeletal/
actin-related proteins. The cytoskeletal changes, as depicted in Figure,
are central to several AM functions. Innate immunity, being the first
line of defense, provides a logical target for therapy, because deranged
innate immunity most likely leads to dire downstream consequences.
Thus, ensuring a well-functioning AM is essential to lung health. SP-
A1 and SP-A2 appear to be important regulators of AM protein
expression and function, and using these therapeutically may help
ameliorate disease severity in several conditions. Moreover,
preliminary evidence indicates that SP-A1 and SP-A2 treatment may
have a positive impact beyond innate immunity by benefiting
surfactant-related functions, and perhaps clinical cases beyond RDS.
Alternatively, understanding the regulatory mechanisms of SP-A1 and
SP-A2 could help modulate SP-A1 and SP-A2 levels and therefore this
line of investigation should be a research priority. In specific, such
knowledge can help identify points of therapeutic intervention to
enhance individual expression of SP-A1 and/or SP-A2 under certain
conditions.
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