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Editorial
Understanding the design principles of bacterial pathogenesis is

central to combat several infectious diseases in humans, animals and
plants [1]. This includes identification of common bacterial
pathogenicity mechanisms employed by a wide variety of bacteria,
which infect diverse hosts [2]. Recent studies have identified one such
common virulence mechanism: Type III Secretion System (T3SS),
employed by several animal and plant pathogenic bacteria [3-6].
Classically, the components of T3SS physically assemble to form a
complex needle-like structure that enables the bacteria to inject
virulence factors directly into their host cell’s cytoplasm. These factors
in turn specifically interfere with their host cellular processes to elicit
pathogenicity [7,8]. However, despite the common injection
mechanism, each bacterial species injects unique set of species-specific
virulence factors that define the host specificity [3,4].

The proteobacterial groups that primarily employ T3SS to infect
variety of plants are Xanthomonas, Ralstonia and Burkholderia to
mention a few [7-9]. Among them, the species of Xanthomonas genus
are well studied and are known to infect wide spectrum of host plants,
including several economically important plants like wheat, rice,
beans, tomato, cotton, paper and citrus [10]. Currently around 27
plant-associated Xanthomonas species are known [11]. T3SS in these
species are encoded by a cluster of hypersensitive response and
pathogenicity (hrp) genes [9,12]. In most of these species, hrp cluster
expression is regulated by a key transcription factor HrpX via the two-
component response regulator HrpG [13]. HrpX is an AraC-type
transcriptional activator that specifically recognizes the plant-inducible
promoter (PIP-box) motifs present in the cis-regulatory regions of the
regulated target genes [14,15]. The consensus sequence of PIP-box
consists of a direct repeats of “TTCGC” with a spacer of 8-26 base
pairs between the repeats [16].

Over the past three decades, the cataloguing of the HrpX target
genes is underway by genetic, biochemical and high-throughput
methods [10,17-23]. Recent genome-wide transcriptomic studies have
reconfirmed many of these target genes, and additionally identified
new ones, which lead to the discovery of a more comprehensive picture
of the HrpX regulome [13,24]. Despite the detailed knowledge about
HrpX regulome, the factor controlling the HrpX transcriptional
activity is currently lacking.

The knowledge of protein sequence and domain composition is vital
to the discovery of a factor controlling the HrpX function.
Bioinformatics analysis of the HrpX sequence from Xanthomonas citri
subsp. citri (Xcc) revealed the existence of tetratrico-peptide-repeats
(TPRs) domain, and a jelly roll like domain, in addition to the already
known AraC-type DNA-binding domain [25]. TPRs are known to
mediate protein-protein interactions; hence, it can be hypothesized

that the presence of this domain may facilitate HrpX to recruit the
transcription machinery to the core promoter, thereby initiate the
transcription of the target gene. On the other hand, the jelly roll like
domain is known to bind to a host environment molecule in other
pathogenic bacteria [26]. This tentatively suggests that jelly roll like
domain in HrpX might also have a role to bind to a factor present in
the host plant environment that ultimately controls the target gene
regulation.

In order to demonstrate that exogenous factor controls the HrpX
functioning, synthetic biology approaches would be advantageous to
employ [27,28]. By this approach, a synthetic reporter system can be
constructed by placing the regulation of a fluorescent reporter gene
under the control of HrpX, using a known regulatory sequence motif
of PIP-box. Further, the expression of hrpX can be controlled by an
inducible transcription factor like AraC or LacI [29]. This synthetic
transcriptional cascade will enable to determine, whether both HrpX
and an environmental factor are required in order to regulate the target
gene expression that can be assessed by directly measuring the
fluorescence from a reporter. Establishment of this synthetic functional
assay system will further allow to disentangle the hrpX from its native
organism context, by implementing it in a standard model organisms
like Escherichia coli [29]. This synthetic system will directly allow us to
test whether a factor from the host environment controls the HrpX
transcriptional activity or not. Conversely, this system will also be
useful to screen for synthetic small-molecule inhibitor for the HrpX in
a high throughput fashion.

This proof-of-concept experiment will provide a direct link to the
host environment controlled regulation of virulence gene expression,
hence helps in mechanistic understanding of HrpX functioning. Other
interesting questions useful to be explored include the identification of
the active molecule from the host environment responsible, and how
similar is the identified molecule structurally across different
Xanthomonas species. Based on the structural similarity of the
molecule, one might be able to possibly design a master small-
molecule inhibitor to control the diseases caused by Xanthomonas
species. Future studies exploring on these questions will directly enable
the development of a master strategy to fight many bacterial infections.
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