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The levels and strength of evidence expected for demonstration of 
clinical utility (defined as ability to predict clinical outcome and the 
added value over standard care) of pharmacogenomics-guided drug 
therapy continue to be a significant barrier for implementation of 
pharmacogenomic testing in clinical practice. Given the scope of the 
current healthcare expenditure and evidence-based driven clinical 
environment, any clinical trial to validate clinical utility is expected 
to not only be hypothesis-driven but also extensive in terms of time 
and sample size. As an example, the ongoing multi-site, randomized 
controlled Pharmacogenomics of Anti-platelet Intervention-2 
(clinicaltrials.gov NCT01452152) trial compares pharmacogenomic-
guided antiplatelet therapy versus standard care on cardiovascular 
events in 7,200 patients undergoing percutaneous coronary 
intervention, but the results likely will not be available until 2015. In the 
meantime, clinicians continue to debate and disagree on the quantity 
and quality of data that are scientifically appropriate but at the same 
time realistically achievable, [1,2] and based on the lack of consensus, 
payers continue to decline reimbursement for pharmacogenomic 
biomarker tests, [3] even though at times the tests are much less 
expensive than the drugs that are paid for.

Traditional randomized, placebo-controlled, clinical studies 
provide evidence on drug efficacy and safety in a large patient cohort 
in an attempt to compensate for statistical issues related to multiple 
confounding variables that include, but not limited to, disease and 
population heterogeneities and drug response variabilities. Although 
usually considered the gold standard, such trials might not be the best 
model for validation of pharmacogenomics biomarkers, since the 
emphasis and clinical value of pharmacogenomics are more geared 
towards the outliers (the non-responders, the poor metabolizers, or the 
ultra-rapid metabolizers). The important question to be addressed then 
is “Are we sacrificing patient care on the insistence of waiting for proof-
of-value via the evidence-based approach”?  

With this dilemma, paradigm shifts in our approaches to the 
levels of evidence would be necessary. Instead of simply waiting for 
conclusive evidence from yet-to-be completed randomized, controlled 
clinical studies, different steps should be taken to facilitate the 
genotyping implementation in clinical environments, whilst at the 
same time examine comparative effectiveness and/or cost-effectiveness 
of pharmacogenomics-guided therapy using a variety of approaches. 
Recent progresses at major medical institutions and centers in the 
United States as well as overseas demonstrated the practical approaches 
to, and clinical values of, implementation [4-7]. The approaches of pre-
emptive (pre-prescription) genotyping in conjunction with pop-up 
alerts embedded within electronic medical record system adopted at 
some of the centers represent bold initial steps of applying scientifically 
valid pharmacogenomics information [4-6]. Other parallel 
developments include evidence-based clinical recommendation with 
treatment guidelines available through the Clinical Pharmacogenetics 
Implementation Consortium, the European Science Foundation, and 
the British Association of Dermatology [8-10]. 

It is crystal clear to all stakeholders in the field of pharmacogenomics 
that pharmaceutical companies have very little financial incentive 
to conduct randomized controlled clinical trials for out-of-patent 

marketed drugs, which account for a very significant portion of the 
pharmacogenomic literature. Therefore, a rethinking of the types 
of study design and/or the quality of study data to move the field 
forward has to be adopted. Replication of genotype-drug response 
associations in multiple cohorts or inclusion of replication data, for 
example, with warfarin and simvastatin [11,12], represents approaches 
that can add further evidence of clinical validity (defined as ability to 
identify patients at risk for adverse drug reactions, or to differentiate 
responders from non-responders). The recent report of comparative 
effectiveness between pharmacogenetic-guided warfarin therapy 
in 504 patients versus standard care in 1,866 patients provides a 
strong validation to the clinical benefit associated with the use of 
pharmacogenomic biomarkers in a real world setting, and included 
encouraging data regarding the clinical utility of a simple dosing 
algorithm [13]. Prospective enrichment-design clinical trials that are 
stratified according to disease subtypes, inclusion of patients more 
likely to respond, or exclusion of patients highly susceptible to adverse 
drug reactions, have been advocated [14], and might further reduce 
the required number of participants for the purpose of a clinical trial.

In this regards, the evidence-based review that showed lack 
of association between CYP450 genotypes and the metabolism, 
effectiveness, and side effects of Selective Serotonin Reuptake Inhibitors 
(SSRIs) in the management of depression [15] has been cited much 
often as the rationale that pharmacogenomic biomarker tests could 
not improve outcome and should not be used in decision-making. 
However, given the flat-dose response relationship, a wide therapeutic 
index, and the metabolism of most SSRIs mediated by multiple CYP 
isoenzymes, some of which are not polymorphic, the SSRIs would 
not be good candidate for testing the clinical validity and utility of 
genotype-based pharmacogenomic therapy. In contrast, the “single-
arm” prospective intervention study by Epstein et al. [16] provides how 
real-world study not only provide practical information for clinicians, 
but also lay the foundation for additional studies, if necessary, as was 
shown in the case for warfarin [13].

Finally, conducting practical clinical trials in real world setting, 
as has been proposed in the past [17,18], that whilst seemingly 
uncontrolled, can provide results that are more relevant to practitioners 
and payers alike. Such real-world studies include those reported for 
warfarin [13,16], and the concept can be adopted even at the grassroot 
level on a much smaller scale, in clinics or physician offices. As an 
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example, elimination of tolbutamide in carriers of CYP2C9*2 and 
CYP2C9*3 variants were 50% and 84% slower, respectively, than in 
homozygous carriers of CYP2C9*1 [19]. However, to-date there is no 
prospective, randomized, controlled clinical trial to evaluate whether 
50% to 90% dose reductions would be appropriate in clinical practice 
for patients who are carriers of the two allelic variants. Monitoring of 
tolbutamde efficacy can be easily done after implementation of these 
dosage reductions, and such effort could constitute the first step of 
gathering information regarding clinical utility of CYP2C9 genotyping 
in optimizing tolbutamide therapy.

One of the issues embedded within the concept of clinical utility for 
a particular genetic test is whether there is risk associated with the use of 
the test and whether that risk outweighs the benefit offered by the test. 
While the concern is definitely legitimate for a multitude of reasons 
with respect to disease susceptibility, especially if there is no available 
intervention or modification to mitigate the risk; the significance of 
the concern is somewhat less for testing metabolic capacity and/or 
drug target sensitivity, both of which would be useful information in 
optimizing drug therapy. This is especially true for drugs with a narrow 
therapeutic index where knowledge of all patient-specific factors, 
including genetic influences, that predispose drug-related toxicities are 
needed for preventing or reducing morbidity and mortality. 
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