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Abstract
Human α-lactalbumin (LA) has an important function in mammary cells, activates the caspases involving in 

apoptosis. LA complex interacts with DNA in tumor cells with histones and impaired the chromatin structure. There are 
no any data on how LA recognizes DNA and interact with histones and DNA of chromatin. The approach of stepwise 
increase in ligand complexity was used for estimation of the relative contribution of every DNA nucleotide unit to its total 
affinity for human LA. It was shown that the LA DNA-binding site minimal ligands are orthophosphate and all dNMPs 
and rNMPs (Kd=(5.0-43)×10-5). Maximal contribution to the total affinity was observed for three nucleotide units of all 
(pN)n with a significant decrease in the order 1>2>3, at n=4-6 it was remarkably lower and at n ≥ 6-7 all dependencies 
of -logKd upon n reached plateaus. Double-stranded (pN)n showed significantly lower affinity comparing with single-
stranded ligands. The thermodynamic parameters characterizing the specific contribution of (pN)1-6 every nucleotide 
link (ΔGo) to their total affinity for LA were estimated. The spatial model of LA-DNA complex was calculated. LA protein 
sequence has homology with those of five histones (H1-H4) involved in the chromatin nucleus interactions between 
themselves and their complex with DNA. It is assumed that the homology may be the main reason for the interaction 
of LA with chromatin DNA, leading to a breakdown in its structure, as well as the proper binding of histones between 
themselves and with DNA.
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Introduction
Components of human milk (proteins, fatty acids, carbohydrates, 

minerals, and vitamins) provide the necessary set of dietary factors 
for infant growth, affect the immune system, cognitive development, 
and positively modulate the intestinal microflora [1]. The unique 
composition of milk and its biological properties makes the milk 
attractive for different kinds of research. Human milk contains a lot of 
various proteins with different biological functions. The concentration 
of proteins in human milk is high in the early lactation (3% by weight), 
and then it gradually decreases to a relatively low level (0.8-1.0% in 
mature milk) [2].

Human milk α-lactalbumin (LA) is one of the major proteins, and 
its content is 10-20% of the total protein (1-1.5 mg/ml) [3]. This protein 
with molecular mass 14.1 kDa is a homolog of lysozyme. LA consists 
one polypeptide chain containing 123 amino acid (AA) residues. 
Natural LA consists of two domains: a large α-helical domain and a 
small β-fold domain. Domains held together with a cysteine bridge, 
forming the Ca2+-binding loop [3]; it binds to calcium in molar 1:1 ratio 
[4]. The calcium-binding α-lactalbumin has drastically changed the 
Stokes radius of the LA, and the protein becomes much more compact. 
LA performs an important function in the secrets of mammary cells: 
this is one of two components lactosaminated catalyzing the last stage 
of the biosynthesis of lactose. It was shown that α-lactalbumin aromatic 
cluster of a substructure adjacent to the cleft, it is important for LA 
interaction with galactosyltransferase and effects on binding of glucose 
in the lactose synthase complex [5].

The activation of different caspases playing a central role in the 
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signaling and execution steps of apoptosis by a folding variant of 
specific human alpha-lactalbumin (MAL) isolated from human milk 
was studied. It was shown that MAL activates the caspases involving in 
apoptosis and that direct MAL interaction with mitochondria results 
in the release of cytochrome c, suggesting that this release may be an 
important step in the initiation as well as amplification of the caspase 
cascade in Jurkat and A549 cells [6].

It was proposed that α-lactalbumin is an example of a protein 
that can acquire different functions depending on its folding state [7]. 
First, it was shown that native α-LA from human milk cannot induce 
apoptosis, while its complex from acid-precipitated milk casein was 
shown able to induce apoptosis in tumor and immature cells, but not in 
mature, differentiated cells [8]. HAMLET (α-LA of humans made lethal 
to tumor cells) is shown to consist of partially unfolded α-lactalbumin 
that bound with a cofactor stabilizing protein specific conformation. 
This cofactor was identified as a specific fatty oleic acid [9]. It has 
been found that α-LA may be not the main cytotoxic component of its 
complexes with oleic acid, but the acid is more important [10,11].

HAMLET was shown to bind strongly with H3 and to a lesser 
extent with H4 and H2b histones [12]. In vivo, in tumor cells HAMLET 
co-localized with histones and impaired the chromatin structure. 
In vitro, HAMLET bound strongly with histones and disturbed their 
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deposition on DNA. It was concluded that HAMLET interacting with 
histones and chromatin in nuclei of tumor cells and proposed that such 
interaction leads to cells death due to irreversible disrupting chromatin 
organization.

It was presumed that most biological processes are carried out by 
complexes of different proteins and enzymes [13,14]. Many human 
milk components are multifunctional and cooperating with many other 
factors can produce specific effects modulating growth and development 
of neonates [15]. Recently, a very stable high molecular mass (~1000 
kDa) multiprotein complex from fifteen preparations of human 
milk was purified and characterized [16]. All very stable complexes 
from different milk were similar and contained α-lactalbumin and 
lactoferrin as major proteins, while β-casein, human milk albumin, and 
immunoglobulins were present in moderate or minor amounts.

It was shown that α-LA interacts with calf-thymus DNA [17]. All 
stable milk protein complexes hydrolyzed efficiently DNA [16]. The 
question of how individual proteins and their complexes with other 
proteins recognize DNA is a very important question in molecular 
biology.

The most informative method of protein-DNA complexes analysis 
is X-ray crystallography (for reviews see [18-25] and references 
therein). However, X-ray data cannot provide quantitative estimates of 
the relative contributions of strong and weak specific and nonspecific 
individual contacts to the total affinity of proteins for DNA [26-29]. For 
evaluation of the relative contributions of every individual nucleotide 
unit of long DNA to the total enzyme affinity for DNA, the approach 
of stepwise increase in ligand complexity (or SILC) was developed [26-
29]. Many DNA-dependent enzymes interacting with various DNAs 
of different structures or sequences including enzymes of replication, 
repair, topoisomerization, integration, restriction, and several other 
types were analyzed using the SILC approach [30-44]. It was shown 
that high affinity (depending on enzyme 5-8 orders of magnitude) is 
mainly provided by weak additive interactions between the enzymes 
and DNA mononucleotides, which are within the DNA-binding cleft 
(depending enzyme n=7-20). Interaction of enzymes with specific 
comparing with nonspecific DNA is accompanied by a strengthening 
of some contacts existing for nonspecific DNA and by the formation 
of new specific contacts. However, specific contacts of enzymes with 
cognate DNAs are usually weak, and their relative contribution to 
the total affinity of DNAs to enzymes does not exceed 1-2 orders of 
magnitude. In addition, both DNAs and enzymes after binding undergo 
multiple conformational changes leading to the formation of the 
catalytically proficient structure and the reaction rate for specific DNAs 
comparing with nonspecific ones increases by 6-8 orders of magnitude. 
The specificity of all DNA-dependent enzymes is provided due to the 
enzyme-dependent adjustment of DNA conformation and directly by 
chemical step of the catalysis [24-26].

 In the literature, there is no any data on the structural determinants 
of DNA-ligands, including evaluation of the relative contribution of 
their mononucleotide units to the total affinity of oligonucleotides 
and DNA to proteins without catalytic activities. It was shown that 
α-lactalbumin interacts with polymeric DNA [17] and with histones 
distributing their deposition on DNA [12]. However, these results do 
not contribute to an understanding of a possible mechanism of DNA 
and histones recognition by α-lactalbumin.

Here we report the first analysis of specific regularities of DNA 
recognition by α-lactalbumin. The SILC approach was used to probe 
for interactions of α-LA with a series of model single-stranded and 

double-stranded oligonucleotides, and the results are analyzed using 
a thermodynamic model of DNA recognition. An analysis was made 
of how the LA can interact with histones and can influence on the 
interaction between histones and their complex with DNA.

Materials and Methods
Chemicals used

Reagents used in this work were obtained mainly from Sigma 
and Merck. All deoxy- and ribo-oligonucleotides were prepared from 
commercially available phosphoramidites (Glen Research, Sterling, 
VA) on an ASM-700 synthesizer (BIOSSET, Novosibirsk, Russia). The 
sequences of ODNs and ORNs used in this work are given in Tables 1 
and 2. All ODNs and ORNs were homogeneous according to data of 
reversed-phase chromatography. Complementary oligonucleotides we 
annealed using standard approach.

Milk of ten donors was used for the purification of LA. The milk 
sampling protocol conformed to the local hospital human ethics 
committee guidelines (Ethics committee of Novosibirsk State Medical 
University, Russia). Institutional ethics committee specifically approved 
this study including written consent of donors to present their milk 
for scientific study in accordance with Helsinki ethics committee 
guidelines.

LA purification

Electrophoretically homogeneous LA preparations were obtained 
from ten milk of healthy mothers. The milk samples (500 ml) were 
centrifuged twice for 40 min at 12000 rpm (Beckman Coulter Avanti 
J-E, rotor JA-14). After each centrifugation, lipid layer at the top and 
the cells and protein precipitates from the bottom were removed. Then 
milk proteins were precipitated by ammonium sulfate followed by 
phenyl-Sepharose chromatography and gel filtration on a Sephadex 

Ligand n Kd. M* Ligand n Kd. M*

Orthophosthate 0 1.0 × 10-3 - - -

d(pA) 1 5.0 × 10-5 d(pT) 1 3.0 × 10-4

d(pA)2 2 5.3 × 10-6 d(pТ)2 2 6.5 × 10-5

d(pA)3 3 2.8 × 10-6 d(pТ)3 3 9.4 × 10-6

d(pA)4 4 6.6 × 10-7 d(pТ)4 4 1.8 × 10-6

d(pA)5 5 2.4 × 10-7 d(pТ)5 5 1.4 × 10-6

d(pA)6 6 8.8 × 10-8 d(pТ)6 6 9.0 × 10-7

d(pA)7 7 8.8 × 10-8 d(pТ)8 8 1.0 × 10-6

d(pA)8 8 1.0 × 10-7 d(pТ)10 10 2.4 × 10-6

d(pA)11 11 1.3 × 10-7 d(pТ)11 11 1.1 × 10-5

d(pA)13 13 1.6 × 10-7 d(pТ)12 12 1.5 × 10-5

d(pA)16 16 1.2 × 10-6 d(pТ)14 14 1.9 × 10-5

d(pA)20 20 2.2 × 10-6 d(pТ)16 16 8.6 × 10-5

d(pA)24 24 2.9 × 10-6 d(pТ)24 24 1.1 × 10-4

d(pC) 1 1.2 × 10-4 d(pC)8 8 5.0 × 10-7

d(pC)2 2 3.0 × 10-5 d(pC)9 9 5.3 × 10-7

d(pC)3 3 1.2 × 10-6 d(pC)10 10 2.6 × 10-6

d(pC)4 4 5.5 × 10-7 d(pC)12 12 1.2 × 10-5

d(pC)5 5 2.2 × 10-7 d(pC)16 16 1.6 × 10-4

d(pC)6 6 2.1 × 10-7 d(pC)24 24 1.8 × 10-4

d(pA)6×d(pT)6 6 1.8×10-7 d(pA)16×d(pT)16 16 8.5×10-6

d(pA)12×d(pT)12 12 1.2×10-6 d(pA)20×d(pT)20 20 1.7×10-5

*The values of Kd were estimated from the Scatchard plots; the average of three 
independent experiments: the determination error did not exceed 10-15%. 

Table 1: The affinity of α-lactalbumin for orthophosphate, dNMP, single- and 
double-stranded ODNs.
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G-50 column [45]. To protect LA from bacterial contamination, the 
preparations were sterilized by filtration through a Millex filter (pore 
size 0.1 µm). To analyze an “average” situation concerning homogeneity 
of LA, a mixture of equal amounts of 10 preparations (LAmix) was 
prepared. The homogeneity of LAmix was confirmed by SDS-PAGE with 
following silver staining.

Crosslinking of LA molecules

The analysis of LA molecules interaction leading to the formation of 
their complexes was carried out using glutaric dialdehyde. The reaction 
mixture (20 µl) contained 25 mМ HEPES-NaOH (pH 6.0), 0.3 mg/ml 
LA, and 0.5 mM glutaric dialdehyde. The mixtures were incubated for 
1 hours at 22oC. Separation of LA cross-linked forms were performed 
using SDS-PAGE in 4-18% gradient gels (0.1% SDS), and polypeptides 
were visualized by silver staining.

Fluorescence measurements

Fluorescence was measured using Cary Eclipse (Varian) 
spectrofluorimeter at 220C. Excitation was performed at 287 nm 
while fluorescence emission detected at 344 nm. The reaction mixture 
contained 20 mM Tris-HCl (pH 7.5) and 0.3 mg/ml LA. Aliquots 
(1.0-5.0 μl) of different oligonucleotides were consecutively added to 
the mixture, and changes in the LA fluorescence (ΔF) were recorded, 
with correction for dilution. The Kd values of LAON complexes were 
calculated from the Scatchard equation ΔF=ΔFmax-Kd(ΔF/[L]), where 
[L] is the concentration of free oligonucleotide in the mixture [46]. The 
estimation error did not exceed 7-15%.

Analysis of proteins homology

The homology of the protein sequences was analyzed using the 
LALIGN Server.

Analysis of the LA tetramer structure

The analysis of the packing of the subunits of LA in the crystal 
lattice was carried out for the structures of human LA from the PDB 
database with the identifiers 1HML [47] and 3B0I [48] using UnitCell and 
PropPDB AmberTools [49]. DNA structures of duplexes in B-form were 
predicted using the web server. Construction of a DNA complex with a LA 
tetramer is based on positional alignment; the number of contacts between 
the subunits was estimated using the developed Python scripts.

Statistical analysis

The results wear given as the mean ± standard deviation of three 
independent experiments.

Results
Purification and characterization of α-lactalbumin

In this work, electrophoretically homogeneous LA was purified 
from the milk of ten mothers by sequential chromatography of the 
milk proteins on phenyl-Sepharose and by then by gel-filtration on 
a Sephadex G-50 [45]. To analyze an “average” situation concerning 
homogeneity, we have prepared a mixture of equal amounts of LA 
preparations from the milk of ten mothers. The homogeneity of the 
typical 14-kDa LA was confirmed by SDS-PAGE with silver staining, 
which showed a single band (Figure 1).

It was shown previously that LA forms oligomeric complexes. 
Therefore, we have analyzed a possible number of LA monomers in 
such complexes at the protein concentration 0.3 mg/ml using protein 
molecules crosslinking by glutaric dialdehyde. Figure 1 shows that after 
1 h of the mixture incubation one can see that different complexes of 
crosslinked LA contain 2, 3 and 4 molecules of the protein. Under these 
conditions, the main form of the LA complex is a tetramer (Figure 1).

It was previously shown that human milk LA interacts with 
polymeric DNA [15]. First, we have shown that interaction of LA with 
different oligonucleotides leads to a significant loss in the fluorescence 
emission by the tryptophan residues of this protein. Then we tried 
to estimate a possible affinity of different oligonucleotides (ONs) 
to LA using quenching of fluorescence emission. Using the SILC 
approach we have analyzed the interaction of deoxy-(ODNs) and ribo-
oligonucleotides (ORNs) of different structure and length with LA. 
Typical examples of the Kd values determination using the Scatchard 
plot are given in Figure 2.

Ligand n Kd, M* Ligand n Kd, M*

Orthophosphate 0 1.0 × 10-3 - - -

r(pA) 1 2.3 × 10-4 r(pU) 1 4.3 × 10-4

r(pA)2 2 4.0 × 10-5 r(pU)3 3 3.8 × 10-5

r(pA)4 4 2.6 × 10-6 r(pU)4 4 3.0 × 10-5

r(pA)5 5 3.3 × 10-7 r(pU)5 5 1.1 × 10-5

r(pA)6 6 1.5 × 10-7 r(pU)6 6 2.2 × 10-6

r(pA)8 8 1.8 × 10-7 r(pU)8 8 2.2 × 10-6

r(pA)10 10 1.0 × 10-6 r(pU)9 9 4.8 × 10-6

r(pA)19 19 8.1 × 10-6 r(pU)14 14 1.1× 10-5

r(pA)24 24 8.8 × 10-6 - - -
r(pC) 1 3.0 × 10-4 r(pC)6 6 2.2 × 10-6

r(pC)3 2 3.5 × 10-5 r(pC)8 8 2.2 × 10-6

r(pC)4 4 2.0 × 10-5 r(pC)9 9 3.0 × 10-6

r(pC)5 5 6.6 × 10-6 r(pC)12 12 8.8 × 10-6

*The values of Kd were estimated from the Scatchard plots; the average of three 
independent experiments: the determination error did not exceed 10-15%. 

Table 2: The affinity of α-lactalbumin for orthophosphate, rNMP, and ribo-
oligonucleotides.

Figure 1: SDS-PAGE analysis of LAmix (10 µg) corresponding to the mixture of 
the protein from milk of ten healthy mothers in a 4-18% gradient gel followed by 
silver staining (lane 1). Before electrophoresis LA (0.3 mg/ml) was incubated 
for 1 h at 22°C with 0.5 mM glutaric dialdehyde (lane 2). LA, LA2, LA3, and LA4 
correspond to LA oligomer forms containing 1, 2, 3, and 4 its monomers. The 
arrows (lane C) indicate the positions of molecular mass markers.
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Figure 2: Typical Scatchard plots characterizing interaction of several d(pN)
n and r(pN)n with LA (0.3 mg/ml) as measured by quenching of the tryptophan 
fluorescence emission. Different ONs are shown on Panels A-D.

Minimal ligands of LA DNA-binding site

The formation of the LA × DNA complex was analyzed using the 
SILC approach, according to the following scheme: orthophosphate or 
mononucleotide (as minimal ligands of LA) → single-stranded homo-
d(N)n → double-stranded homo-d(N)n.

Table 1 shows that the minimal ligands of LA DNA-binding site are 
orthophosphate (Pi; Kd=1.0 × 10-3 M)). Transition from orthophosphate 
to dTMP (3.0 × 10-4 M), dCMP (1.2 × 10-4M), and dAMP (5.0 × 10-5 
M) leads to the increase in the affinity respectively ~3.3-, 8.3-, and 20-
fold; inverse values of these magnitudes correspond to the Kd values: 
0.3, 0.12, and 0.05 M characterizing the affinity of this binding site for 
respective cytidine, thymidine, and adenosine of dNMPs.

LA also interacts with ribo-mononucleotides demonstrating 
comparable affinities: rUMP (4.3 × 10-4 M), rCMP (3.0 × 10-4M), 
and rAMP (2.3 × 10-4 M). Only the affinity of LA for dAMP was 
significantly higher (4.6-fold) than that for rAMP, while ribo- and 
deoxy mononucleotides with other bases demonstrated comparable 
affinity (Tables 1 and 2).

Interaction of LA with nucleotide units of single-stranded 
deoxyoligonucleotides

The Gibbs’ free energy for complex formation can be taken as the 
sum of the ∆Go values for individual contacts [46]: ∆Go=∆Go

1+∆Go
2+…

+∆Go
n, with ∆Go

i=-RT × lnKd
i, where Kd

i indicates the contribution of 
the individual contact. The overall Kd value for formation of the protein-
DNA complex is the product of the Kd values for individual contacts: 
∆Go=-RTln Kd=RTln[Kd(1) × Kd(2)…Kd(n)].

To assess possible additivity of LA interaction with different ONs, 
the data (Tables 1 and 2) were analyzed as logarithmic dependencies 
of Kd for oligonucleotides versus the number of d(pN)n and r(pN)
n mononucleotide units (n) (Figure 3A and 3B). Usually the linear 
log-dependencies for ss d(pN)n (for 0 ≤ n ≤ 7-20, n=0 corresponds to 
orthophosphate) provide evidence of the additivity of ∆Go values for 
the interaction dependently of enzyme of 7-20 individual nucleotide 
units of d(pN)n and r(pN)n with DNA- and RNA-binding sites of many 
enzymes analyzed [26-44]. Interestingly, for LA nearly linear increase 
in the affinity (-logKd) was observed only for 5-6 nucleotides of ODNs 

Figure 3: Logarithmic dependences of the Kd values characterizing affinity of 
several ss d(pN)n and r(pN)n for LA. Different ss and ds ONs are shown on 
Panels A and B. The average error in the Kd, and logKd determination from two-
three independent experiments did not exceed 10-15%. Typical Scatchard plots 
characterizing the interaction of two d(pN)n duplexes with LA (0.3 mg/ml) as 
measured by quenching of the tryptophan fluorescence emission; two different 
duplexes are shown on Panels C and D.

and ORNs (Figure 3). The dependencies reach a temporary plateau at 
n=6-8, and then there is a significant decrease in the affinity at n ≥8-9 
(Figure 3). The affinity of d(pT)6 (9.0 × 10-7 M) and d(pC)6, (2.1 × 10-7 
M) was approximately 10- and 2.4-fold lower than that for d(pA)6 (8.8 
× 10-8 M). The affinity of r(pU)6 (2.2 × 10-6 M) and r(pC)6, (2.2 × 10-6 M) 
was the same, and approximately15-fold was lower than that for r(pA)6 
(1.5 × 10-7 M). Thus, d(pA)n and r(pA)n are the best ligands of LA DNA-
binding site. In addition, d(pC)n and d(pT)n demonstrate higher affinity 
than r(pC)n and r(pU)n (Tables 1 and 2, Figure 3).

Affinity of LA for DNA duplexes

UDG “melts” ds d(pN)6-20 partially and contacts with both chains of 
such relatively short ODNs almost independently [37,50]. In contrast, 
DNA polymerases [30,31], AP endonuclease [33], Topo I [39,40], 
8-oxoguanine-DNA glycosylases [34,38] interact with both base-
paired DNA strands. However, the contribution of the second strand 
to the affinity of ds DNA for any enzyme is usually much lower than 
that to the first one. A peculiarity of the behavior of Topo I, DNA 
polymerases, and OGG1 is the "assembly" and subsequent stabilization 
of correct duplexes for which the melting temperature (Tm) in solution 
is substantially lower than the complex formation at temperature used 
[38-40].

We have estimated the Kd values for duplexes (for example, 
Figure 3 and Table 1). The melting point of d(pA)6 × d(pT)6 is much 
lower (~0°C) than the temperature (22°C) used in the Kd evaluation 
experiments. Under these conditions, there is no such complex, and the 
apparent value of Kd (1.8 × 10-7 M) for these ONs is closer to that for ss 
d(pA)6 (8.8 × 10-8 M) than for ss d(pT)6 (9.0 × 10-7 M) (Table 1). Thus, in 
the absence of a duplex, d(pA)6 and d(pT)6 compete for LA and d(pA)6 
having a higher affinity for the protein makes a greater contribution 
to the affinity of the mixture of the ONs for LA. The duplexes d(pA)12 
× d(pT)12, d(pA)16 × d(pT)16, and d(pA)20 × d(pT)20, melting points 
of which are comparable or higher than 22° C (20, 30.6, and 37.3°C, 
respectively), they are characterized comparable affinity (Kd=(1.2-17) 
× 10-5 M in comparison with ss d(pT)12-d(pT)20 ((1.5-11) × 10-5 M), 
but 9-38-fold lower than that for ss d(pA)12-d(pA)20 (Table 1). Thus, the 
affinity of duplexes for LA is significantly lower than for single-stranded 
ODNs.

Thermodynamic model of LA interaction with short ODNs 
and ORNs

All relatively small DNA-dependent globular enzymes (25-40 
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kDa) usually interact with 7-10 nucleotide units of DNA [24-42]. The 
molecular mass of LA is approximately 14.1 kDa. Taking into account 
the relatively low molecular mass of LA one can estimate approximately 
that the protein can cover about 5-7 nucleotides of DNA. All enzymes 
usually have several subsites (7-20 dependently enzyme) for interaction 
with mononucleotides of DNA [24-42]. One of these subsites has 
usually increased affinity for one nucleotide unit of DNA comparing 
with its other units. For example, the affinity of various free dNMP or 
one nucleotide unit of DNA in the case of these subsites of different 
enzymes varied approximately from 10-2 to 10-5 M, while other subsites 
demonstrated significantly lower affinity, 0.8-0.5 M [26-44]. In the case 
of different enzymes, these specific subsites of increased affinity are 
more often catalytic centers, and they usually disposed near the central 
part of the globular proteins [26-29]. Therefore, these subsites interact 
usually with the central nucleotide of DNA fragments “covered” by the 
enzymes. However, HIV-1 integrase recognizes 3’-terminal nucleotide 
of viral DNA with increased affinity [41].

We have estimated a relative contribution of different nucleotide 
units of d(pN)1-6 and r(pN)1-6 to the total affinity of single-stranded NAs 
to LA using Kd values; see the model of LA interaction with d(pN)1-7 
and r(pN)1-7 (Figure 4). Only six nucleotide units of all ONs make an 
appreciable contribution to the effectiveness of their interaction with 
LA providing ∆G° of approximately from -7.21 to 9.53 kcal/mol (Figure 
4). Interestingly, the affinity of LA specific subsite for one nucleotide 
unit of d(pA)1-6 (∆G°=5.8 kcal/mol) is significantly higher than that 
for r(pA)1-6 (∆G°=3.57 kcal/mol). However, the relative contribution of 
the second nucleotide unit of d(pA)1-6 (∆G°=1.32 kcal/mol) to its total 
affinity for LA is significantly lower than that for r(pA)1-5 (∆G°=2.37 
kcal/mol). The contribution of one nucleotide unit of d(pT)1-6 and 
d(pC)1-6 (∆G°=4.55-4.76 kcal/mol) to the affinity for the protein is 
comparable to that for corresponding r(pU)1-6 and r(pC)1-6 (∆G°=4.55-
4.76 kcal/mol) (Figure 4). It is interesting that depending on the base of 
d(pN)6 and r(pN)6, the contribution of each of the six nucleotide units 
may be significantly different (Figure 4).

Construction of the model of LA interaction with ONs

As shown above, the main oligomeric form of the LA under the 
analysis conditions used is the tetramer. To date, the crystal structure 
of the tetramer is unknown. Therefore, we analyzed the possible 
structure of the LA tetramer complex, based on the assumption that its 
structure can correspond to four interacting subunits of the LA crystal 
lattice. Using the results of the analysis (using the crystal structure of 
lactalbumin: PDB 1HML), we chose a tetramer structure that has the 
greatest number of contacts between neighboring subunits, since it 
must be the most stable structure. Then, the interaction of ON with the 
tetramer of LA was simulated.

It is known that sulfate ions usually interact with sites of protein 
for binding of phosphate groups, including internucleoside phosphate 
groups of DNA [51-53]. The analysis of the available crystalline 
structures of the LA in the PDB database made it possible to detect the 
presence of two sites of LA binding sulfate ions (PDB 1HML and 3B0I 
structures). As shown above, orthophosphate, the phosphate group of 
NMPs and one of the internucleoside phosphate groups of ONs have 
an increased affinity for LA (Table 1). We hypothesized that one or both 
of the sulfate ion binding sites in the structure of LA in principle could 
correspond to the sites of recognition of the phosphate groups of the 
NA ligands. One of these binding sites is located on the N-terminal 
part of the recombinant globular domain of LA, and the second is 
disposed at the interface of interaction of neighboring LA subunits in 
the crystalline package [48]. The sites of binding of sulfate ions are at a 

distance of 20 Ȧ from each other, which corresponds to a distance of ~8 
nucleotide pairs between the phosphate groups for neighboring DNA 
chains in the B form Figure 5. We analyzed the possible structure of the 
DNA complex with the obtained model of the LA tetramer, suggesting 
that the positions of the internucleoside phosphate groups of DNA in 
complex with the LA should coincide with the position of the sulfate 
ions binding sites (Figure 5).

As can be seen from Figure 3, an increase in the length (pN)n leads 
to an increase in affinity only up to n=6-7. It should be assumed that 
most likely, (pN)6-7 effectively interact with only one of two sites for the 
binding of sulfate groups since a sharp increase in affinity for n ≥7 is 
not observed Figures 3 and 4. On the one hand, this may the result that 
the affinity for one of the two sites may be significantly higher than to 
another one, or during the adaptation of the structure (pN)n and LA, 
the effective convergence of the AA residues of the protein and ON 
phosphate groups with one of the sites is not achieved. In addition, the 
sulfate ion binding sites observed in the recombinant globular domain 
structure of LA 3B0I may not be available in the full-length protein. A 
significant decrease in the affinity is particularly pronounced at n ≥ 9 
Figure 3, when (pN)n can come into contact with neighboring globules 
of the protein, which should lead to steric hindrance of complex 
formation with one of the subunits.

Analysis of possible causes of LA interaction with histones 
and chromatin DNA

Of particular interest are the data that the LA binds to chromatin 
DNA, breaks its structure and prevents the histones complex from 
binding to DNA [7-9,12]. It is known that in the central, most 
conservative regions of the nucleosome core, hydrophobic AAs are 

Figure 4: Thermodynamic model (-ΔG° values) characterizing a relative 
contribution of different mononucleotides of ss d(pA)7 and ribo(pA)7 to the total 
affinity of these (pN)7 for LA. Different ss (pA)7 are shown on the Panel.

Figure 5: The calculated model of interaction of four subunits with the formation 
of the tetrameric form of LA and its interaction with an oligonucleotide. The 
model was constructed using X-ray diffraction data for lactalbumin. DNA is 
indicated in red.
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prevail and they are necessary for the interaction between the histones 
(histones in pairs "recognize" each other). As a result, heterodimers 
are formed, which in turn form an octamer consisting of a tetramer of 
histones H3-H4 and two dimers H2a-H2b [54].

The possibility of interaction of LA with histones and nucleosome 
DNA can be related to the homology between LA and histones. We 
analyzed the global homology between LA and histones. It was revealed 
that H2a histone has 14.4% full coincidence of the sequences of AAs 
(identity) and 41.1% similar in structure to AAs (similarity) with LA 
protein sequence. A similar situation is observed in the case of histone 
H3: 18.1% identical and 40.6% similar AA in H3 and LA sequences. 
However, the possibility of different proteins competition for the 
same ligands is generally not conditioned by their global, but by the 
homology of the local specific sequences interacting with these ligands, 
which for all histones is significantly higher.

Major, moderate and minor sites of specific cleavage of H1, H2a, 
and H2b [55,56], as well as H3 and H4 [57] histones with antibodies 
against these proteins having proteolytic activity (abzymes), were 
previously found. Interestingly, in accordance with the crystal structure 
of the nucleosome core, some AA residues located in the abzyme-
dependent cleavage sites of H3, H4, H2a, and H2b are directly involved 
in the interaction of these histones with the DNA of the nucleosome 
[55-57]. In the core of the nucleosome, most major and moderate 
cleavage sites H2a and H2b are involved in the interaction between 
these histones [56]. Minor H2a cleavage sites are involved in binding 
to histone H3 in nucleosomes. Two moderate H2b sites and one major 
cleavage site for H2a are located in the disordered N-terminal region of 
these histones interacting with the DNA of the chromosome nucleus 
[56]. According to the crystal structure of the nucleosomal nucleus 
[58], all identified cleavage sites should influence the interaction of H2a 
and H2b, the assembly of nucleosomes, and the binding of H2a and 
H2b to DNA [56].

Taking this into account, we have analyzed a possible homology of 
the abzyme-dependent cleavage sites of all histones with the protein 
sequence of LA. As one can see from Figure 6, most of the sites of 
abzyme-dependent hydrolysis of all five histones have a high level of 
homology with different fragments of the protein sequence of LA. In 
Figure 6 all sequences of LA that are homologous with the cleavage sites 
of all five histones are marked in bold. It is interesting that as a whole, 52% 
of AA residues of LA have homology (identity) with different specific 
cleavage sites of five histones Figure 6. Thus, it should be assumed that 
the homology of the protein sequence of LA with sequences of the 
histones involved in the interaction between themselves and with DNA 
of the chromatin nucleus can provide competition of LA for its binding 
with histones and DNA. This can be the main reason for the interaction 
of LA with chromatin DNA, leading to a breakdown in its structure, 
as well as prevent histones to interact with each other and with DNA.

Discussion
It was revealed that the minimal ligands of all DNA-binding proteins 

are orthophosphate, dNMPs, and rNMPs [26-44]. The high affinity of 
different sequence-specific and nonspecific DNA-dependent enzymes 
(repair, topoisomerization, restriction, and integration) is usually 
provided by a superposition of different strong and weak contacts. The 
affinity of nonspecific dNMPs to the active centers of sequence-specific 
enzymes is usually only 2-20-fold lower than for specific nucleotides 
[26-44]. Then at lengthening of d(pN)n) by one nucleotide unit usually 
there is a monotonic increase in the affinity dependently on enzyme by 
a factor of 1.2-2.6 up to n=7-20 [26-44].

The similar situation is observed for α-lactalbumin efficiently 
interacting with orthophosphate, mononucleotides, all d(pN)2-7 and 
r(pN)2-7 (Tables 1, 2, Figures 3 and 4); the LA interaction only with six 
nucleotide units is consistent with its relatively low molecular mass 
(~14.1 kDa).

Usually, typical linear dependences of -logKd upon n reach a 
constant plateau at n corresponding the number of nucleotide units 
covered by proteins [26-44]. In the case of LA, the temporary plateau 
one can see only at n=6-8, while at n ≥ 9 a significant decrease in the 
affinity of ONs is observed Figure 3. We simulated the tetrameric form 
of LA and its interaction with DNA using data of X-ray diffraction 
analysis of LA. As can be seen from Figure 5, only 6-7 nucleotide pairs 
of DNA may be in contact with every one of the four globules of LA. 
The neighboring globules of the tetramer create steric hindrances for 
ON interaction simultaneously with two subunits, which can sterically 
disrupt the effective interaction of d(pN)n>8 with one of them. The 
affinity of d(pA)n × d(pT)n duplexes for LA is lower than for single-
stranded ONs. Therefore, it should be noted that DNA polymerases, 
apurin-apyrimidine endonuclease, topoisomerase I, and repair 
enzymes interact with both chains of dsDNA [26-44]. The peculiarity 
of the behavior of topoisomerase I, DNA polymerases, and human 
8-oxoguanine-DNA glycosylase is that short complementary d(pN)6-

9, in solution at the temperature of the reaction mixture do not form 
duplexes, but their affinity for enzymes approximately one order of 
magnitude higher than for ss ONs. Consequently, these enzymes 
themselves "assemble" and subsequently stabilize these short duplexes 
due to the interaction of both ON chains not only with each other but 
also with the enzymes. However, the contribution of the second chain 
to the affinity of ds DNA to any enzyme is usually much less than the 
contribution of the first chain, or it is almost completely absent [26-

Figure 6: Specific cleavage sites for H1, H2a, H2b, H3, and H4 with abzyme 
antibodies against these histones involved in the interaction between histones 
and their complex with the DNA of the nucleosomal core are shown in bold on 
panels A-C. These sites are homologous to certain fragments of the lactalbumin 
sequence: the complete coincidence of AA residues is indicated with the help 
of colons, and the structural similarity by points. The panel D summarizes all 
sequences of LA having homology with fragments of all five histones.
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44]. The lower affinity of the LA for ds ONs comparing to ss d(pN)6-

9 indicates that the LA does not stabilize short duplexes. In addition, 
even preformed in solution duplexes of long ONs demonstrate a lower 
affinity for LA compared to ss d(pN)n>16.

LA binds to chromatin DNA, breaks its structure and prevents 
proper binding of histones with DNA [12]. The possibility of 
interaction of LA with histones, and nucleosome DNA may be related 
to the high homology between several fragments of several protein 
sequences of histones and LA Figure 6. Some IgG-dependent cleavage 
sites for H3, H4, H2a, and H2b directly participate in the interaction 
between these histones and their complex with nucleosome DNA [55-
57]. Interestingly, these cleavage sites of the histones have increased 
homology with several sequences of LA; identity of different protein 
sequences varies from 31.2 to 60%, while similarity from 58.3 to 88.9% 
Figure 6. It cannot be ruled out that the homology of the protein 
sequence of LA with sequences of the histones involved in interaction 
between themselves and with the chromatin DNA is the main reason 
for the competition of LA for binding both with histones and DNA and 
disturbances of the correct binding of histones to each other and to 
DNA.

Thus, in this work, the contribution of various links of (pN)n to their 
affinity for LA is estimated for the first time, and the possible causes of 
the interaction of this protein with histones and chromatin DNA of the 
cell nucleus are analyzed.
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