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Human Immunodeficiency Virus (HIV) infections cause an 
incurable devastating immunodeficiency in infected hosts. Extensive 
research on the virus life cycle has lead to tremendous advances not 
only in understanding the biology of the virus but also development of 
novel therapeutics. One of the critical factors involved in HIV infection 
is the C-C Chemokine Receptor 5 (CCR5) that is utilized by the virus for 
gaining entry into the cells. Polymorphisms in the gene and promoter 
region of CCR5 have been associated with disease susceptibility as well 
as disease progression[1]. On the other hand the evolution of the virus 
throughout the course of the disease is also in many ways associated 
with CCR5 usage. How current advances in understanding the complex 
relationship between the virus and host factors like CCR5 can lead to 
better treatment strategies or disease outcome remains unknown.

HIV gains entry into cells by binding to a cell surface receptor 
(CD4) and a coreceptor (CCR5 or CXCR4) via the gp120 subunit of 
the Env glycoprotein [2]. Following this initial binding via the gp120 
subunit, the gp41 subunit mediates the fusion of the cellular and viral 
membranes thereby permitting viral entry. Based on the coreceptor 
usage HIV viruses can be classified into CCR5 utilizing (R5 tropic) 
or CXCR4 utilizing (X4 tropic) or capable of utilizing either of the 
coreceptors (dual tropic) [3]. This tropism of HIV varies though out 
the course of infection with early viruses predominantly R5 tropic and 
emergence of X4 tropic viruses later during the course of the disease. 
The viral determinants of coreceptor usage are well characterized. Based 
on the amino acid sequence in the V3 loop of gp120 [4] coreceptor 
usage can now be predicted using numerous computer softwares like 
Geno2pheno, Wetcat, WebPSSM [5]. However these software are 
more sensitive at predicting HIV-1 subtype B tropism compared to 
other subtypes. Hence clinically the usage of a laboratory assay like 
the “Trophile” assay is considered the gold standard in determining 
coreceptor usage. The determination of virus tropism by this assay 
relies on cloning of the Env gene and determining coreceptor usage via 
infection of CCR5+ or CXCR4+ cells with viruses pseudo typed with 
the patient Env [6]. However this assay has its own limitations as well. 
Minor CXCR4 utilizing species can be overlooked by this assay. More 
recently some studies suggest that deep sequencing of the Env form 
patient derived cellular DNA or viral RNA maybe better predictive of 
minor CXCR4 utilizing quasispecies [7].

This information has become increasingly relevant owing to 
the development and clinical use of CCR5 inhibitors like Maraviroc 
(MVC). Before initiation of therapy the determination of virus tropism 
via clinically approved Trophile assay is being recommended. However 
recent studies suggest that deep sequencing of the V3 region can 
provide a more sensitive and accurate assay for determination virus 
tropism specially when a low frequency of non-R5 tropic viruses is 
present [8]. A more thorough analysis of minor non-R5 utilizing 
Envs maybe better predictive of successful therapy with MVC. The 
development of resistance against MVC is a limitation like any other 
anti-retroviral. Interestingly resistance to MVC occurs via two separate 
pathways. The virus either evolves a switch in the tropism to CXCR4 
usage [9] or acquires specific mutations in the gp120 region that allow 
for use of MVC bound CCR5 [10]. In either case whether the parental 
virus genotype prior to MVC therapy or the host CCR5 promoter 
and gene polymorphism affect this phenomenon is not known. 

Hence understanding the host and viral genetics of CCR5 usage is an 
important factor not only in understanding the virus life cycle but also 
has implications for anti-retroviral therapy. 

It is clear that the HIV Env glycoprotein is constantly evolving in 
HIV infected patients [1,11]. Amongst these evolutions the changes 
in the Env glycoprotein related to coreceptor usage are extensively 
studied and well established [11]. However the factors that influence 
this evolution of viruses remain largely unknown. It is known that 
R5 tropic viruses predominate during early infection with a switch to 
X4 usage late during the disease. However in 50% of the patient the 
virus does not undergo coreceptor switch and maintains R5 tropism 
[12]. What factors allow for or facilitate coreceptor switching are still 
unclear. Studies by various groups have shown that limiting amounts 
of CCR5 on the cell surface of CD4 cells may facilitate X4 switch. In 
fact, experimentally, culture of the virus in limiting amounts of CCR5 
can induce coreceptor switch [13]. On the other hand suppression 
of X4 viruses by the immune system has been suggested as another 
mechanism behind emergence X4 viruses in the later stages of the 
disease when the immune system is compromised. Whether coreceptor 
switch is a cause or consequence of a failing immune system in HIV 
infections is again a question that remains unanswered. The evolution 
of virus towards X4 usage also varies by the subtype of the virus. 
Certain subtypes like subtype C HIV-1 virus largely maintain their 
R5 tropism throughout the disease [14,15]. On the other hand a 50% 
of subtype B viruses undergo coreceptor switch during late stages of 
disease [16]. With increasing spread of subtype C in different regions 
of the world the question arises as to what factors regulate coreceptor 
usage in different subtypes. 

The earliest evidence of a role of CCR5 in HIV infection came 
from the observation that individuals homozygous for the CCR5Δ32 
mutation (CCR5Δ32-/-), a deletion of 32 base pairs in the coding 
region of CCR5 [17] were resistant to HIV infection. The lack of a 
functional CCR5 on the cell surface was demonstrated to be the cause 
of this resistance. But more interestingly the CCR5Δ32 heterozygous 
(CCR5Δ32+/-) individuals have lower levels of CCR5 and show slower 
progression to AIDS [18]. The fact that CCR5Δ32+/- individuals are 
not resistant to infection but only to progression raises the question as 
to whether CCR5 levels influence HIV pathogenesis more than HIV 
infection per se. These suggestions are further supported by numerous 
promoter polymorphisms that tend to regulate the expression of CCR5 
on the cell surface and have also been associated with HIV disease 
progression. 



Citation: Garg H (2012) Host and Viral Determinants of CCR5 Usage in HIV Infection. Single Cell Biol 1:e109. doi:10.4172/2168-9431.1000e109

Page 2 of 2

Volume 1 • Issue 2 • 1000e109
Single Cell Biol, an open access journal
ISSN: 2168-9431

How does CCR5 cell surface expression and HIV Env phenotype 
determine HIV disease outcome is a question that remains to be 
examined in detail. Recently we have demonstrated using cell lines 
with different levels of CCR5 that bystander apoptosis inducing activity 
of HIV Env glycoprotein is dependent on cell surface levels of CCR5 
as well as Env fusogenic activity[19]. However the interplay between 
CCR5 levels seems to be more relevant to bystander apoptosis than 
HIV infection and replication. If this hypothesis were true then HIV 
infection with an R5 tropic virus in individuals with low levels of CCR5 
would allow for virus replication in the absence of CD4 decline. Some 
of the long term non progressors in HIV may have delayed disease 
progression due to this phenomenon. In this scenario another factor 
to consider would be the evolution of virus to X4 usage. In individuals 
with CCR5 low phenotype like CCR5 Δ32+/- genotype, coreceptor 
switch maybe a prerequisite to progression to AIDS. Hence the slower 
disease progression rates maybe a consequence of slower evolution 
of virus to X4 phenotype. Whether this is a direct consequence of 
selective pressure on the virus for limiting amounts of CCR5 or due to 
immunological factors remains to be determined. 

CCR5 protein is a key determinant of HIV pathogenesis and 
disease progression. The polymorphic nature of this gene and the 
constant evolution of HIV Env glycoprotein that binds CCR5 as a 
coreceptor suggest that this interaction is critical to understanding HIV 
biology. More importantly understanding the complex relationship 
between host and viral determinants of CCR5 usage in HIV infections 
could help predict disease progression and devise new strategies for 
therapeutic intervention. 
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