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Abstract
Antibodies to C5a have proven to be effective in treating experimental septic primate models. A 17 amino acid 

peptide (ASGAPAPGPAGPLRPMF) named PepA binds to C5a and prevents complement-mediated lethal shock 
in rats. AcPepA harboring an acetyl group at the N-terminal alanine showed increased inhibitory activity against 
C5a. Cynomolgus monkeys destined to expire from a lethal dose of bacterial endotoxin (4 mg/kg) were rescued 
by intravenous administration of AcPepA. AcPepA could have interfered with the ability of C5a to stimulate C5L2 
which is responsible for HMGB1 release and stimulation of TLR4 as an endogeneous ligand with LPS behavior. The 
suppression of HMGB1 release by AcPepA administration to LPS-shock monkeys is likely responsible for rescuing 
the animals.
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Introduction
Sepsis is a systemic inflammatory response syndrome (SIRS) that 

causes disseminated intravascular coagulation (DIC) and multiple 
organ failure (MOF). Antibodies to C5a have proven to be effective 
in treating experimental septic primate models [1,2]. We generated 
an inhibitory peptide of C5a composed of an amino acid sequence 
ASGAPAPGPAGPLRPMF named PepA [3]. Acetylation at the 
N-terminal alanine of PepA improved the C5a inhibitory capacity and 
was named AcPepA [4].

Materials and Methods
Under anesthesia with sodium pentobarbital, 10 cynomolgus 

monkeys (weighing about 5 kg) were intravenously administered 4 
mg/kg LPS within 30 min. Three monkeys for the control group were 
infused with 15 ml saline during 3 hrs after the LPS injection. Seven 
experimental group monkeys were infused intravenously with 15 ml 
of 2 mg/ml AcPepA starting at 30 min after LPS injection for 3 hrs (2 
mg/kg/hr for 3 hrs). Six hrs after LPS administration, anesthesia was 
terminated when the blood samples showed leukocytosis and increased 
CPK in all monkeys. Monkeys were observed for their status. 

Results and Discussion
All of the 7 AcPepA treated monkeys returned to a healthy condition 

by the following day, while the 3 control monkeys died within two days. 
Despite the increased TNF-α and other cytokine levels, high mobility 
group box 1 (HMGB1) [5,6] which is an endogenous stimulator of 
TLR4 [7-9] did not increase in the AcPepA infused animals (Figure 1).

Furthermore, AcPepA could suppress pathophysiological events 
and prolonged survival time of sepsis piglets induced by cecal ligation 
and perforation (CLP) [10]. Survival times were longer in the AcPepA 
treated group than in the CLP alone group (19.3 h ± 2.7 h vs. 9.9 h ± 
0.7 h, P<0.005). In this case, AcPepA also delayed the HMGB-1 surge.

These above results indicate that suppression of C5 anaphylatoxin 
interferes with the induction of a cytokine storm. Since C5a has the 
capacity to cause release of HMGB1 following stimulation of the second 
C5a receptor termed C5L2 generated on activated monocytes [11-13], 

inhibition of C5a successfully interferes with the above release which 
has the capacity to generate inflammatory cytokines stimulating TLR4 
as an endogenous ligand (Figure 2).

Recently, thrombomodulin (TM) administration has been shown 
to rescue septic shock animals [14]. The enhanced activity of thrombin 
when complexed with TM should have caused activation of thrombin 
activatable fibrinolysis inhibitor (TAFI) which then inactivates C5a 
anaphylatoxin by removing the C-terminal arginine [15,16] resulting 
in suppression of HMGB1 release. Therefore, the therapeutic effect of 
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Figure 1: Increase in HMGB1 in plasma of LPS- injected monkeys.
Six cynomolgus monkeys intravenously infused with a lethal dose of bacterial 
LPS (4mg/kg) destined to death were treated with intravenous administration of 
2 mg/kg/h of AcPepA for 3 h starting 30 min after the lethal LPS injection (#5 
and #8).. Control monkeys (#1 and #10) were infused only saline instead of 
AcPepA following LPS injection. Despite the increased TNFα and other cytokine 
levels, high mobility group box 1 (HMGB1) which is an endogenous stimulator 
of TLR4

7 
did not increase in the

AcPepA infused animals (#5 and #8).
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TM on sepsis should also be due to inactivation of C5a anaphylatoxin 
which initiates a cytokine storm through HMGB1 release.
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Figure 2: Possible role for C5a in a positive feedback inflammatory circuit.
Following bacterial infection, LPS stimulates TLR4, and C5a generated during 
complement activation stimulates C5aR resulting in expression of C5L2 on 
leukocyte membranes. Stimulation of C5L2 by C5a on activated leukocytes 
induces release of HMGB1 which then reacts with TLR-4 on other leukocytes, 
as did LPS, resulting in further recruitment of activated leukocytes that express 
C5L2. These reactions create an inflammatory amplification circuit.
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