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The cerebellum receives massive inputs from widespread areas of 
the cerebral cortex through cortico–pontine-cerebellar projections 
[1-4]. The major output from the cerebellum is directed toward the 
frontal lobe through cerebello-thalamo-cortical pathways. In this 
review, my discussion targets on cerebellar output to the primary motor 
cortex and prefrontal cortex. It has been known that the motor cortex 
and prefrontal cortex receive cerebellar inputs that originate from 
the neurons located in the dorsal and ventral portions of cerebellar 
Dentate Nucleus (DN) respectively [5-7]. This has been confirmed by 
using of retrograde transneuronal transport of rabies virus to identify 
multisynaptic neurons in the motor cortex and prefrontal cortex [8-11]. 

Using the same technique, prefrontal areas were demonstrated to 
be the main targets of crus II of the cerebellar cortex while the motor 
cortex receives cerebellar projections from the lobules and crus I 
[12]. Since these involve diverse capabilities, in particular, higher 
cognitive functions in the prefrontal cortex, it has been thought that the 
cerebello-prefrontal projections mediated by the ventral portion of the 
DN (VDN) of the cerebellar nucleus and crus II of the cerebellar cortex 
contribute to higher cognitive functions, often called the “nonmotor 
channel” [11, 12]; whereas the projections from the cerebellar cortex 
to motor cortex are mediated by the dorsal portion of the DN (DDN) 
and lobule III-crus I are involved in motor control, often called the 
“motor channel”. However, there are marked disagreements regarding 
this theory of crus I being specific for motor cortex and crus II being 
specific for the prefrontal cortex for several reasons. 

First, it has been reported that there is no projection relationship 
like Purkinje cells of crus I to the DDN or those of crus II to the VDN in 
the cerebellum. In fact, at the dorso-ventral level of the DN, the middle 
aspect of the DN, including both dorsal and ventral parts, receives 
inputs from Purkinje cells located in crus I and throughout crus II. At 
the rostrocaudal level, the aspect of DN that receives inputs from crus I 
was anterior to that of crus II [13-16]. 

Second, we have recently performed two experiments to identify 
neurons in the cerebellar cortex that project via the thalamus to area 
46 of the prefrontal cortex and the motor cortex of macaques using 
retrograde transneuronal transport of rabies virus [10,17,18]. As results 
of experiment 1, Purkinje cells labeled from area 46 were equally 
observed in crus I and crus II [Lu et al. unpublished observations]. 
Moreover, in experiment 2, after viral injections into the motor cortex, 
although Purkinje cells labeled from the forelimb representation, 
including the proximal and distal regions, were observed in lobules IV–
VI and crus I but not in crus II, Purkinje cells labeled from the orofacial 
representation were observed in lobule VI, crus I, and crus II [Lu et 
al. unpublished observations]. These data suggest that these cerebello-
cortical pathways originating from the Purkinje cells to prefrontal 

cortex (nonmotor channel) and the motor cortex (motor channel) are 
overlapped in crus I and/or crus II of the cerebellar cortex, rather than 
completely separated. 

The reason to focus on the issue of cerebellar outputs to area 46 
of the prefrontal cortex is that area 46 is characterized by cognitive 
functions, such as reward [19], spatial working memory [20], temporal 
processing [21, 22], evaluation of self-generated decision-making 
[23], categorization [24], and motor learning of classical conditioned 
action [25]. However, the possibility that neurons in the cerebellum are 
involved in cognitive functions has been a controversial subject. Thus, 
our recent studies provide new anatomical evidence for the involvement 
of cerebellar output in cognitive functions. 

Third, physiological and clinical studies have reported that both 
crus I and crus II are involved in cognitive functions. For example, crus 
I has been thought to be involved in judgment of spatial orientation 
[26], language perception [27], complex visual functions like encoding 
parameters of target motion [28], pain-related processes like grimacing, 
fear, and startle reactions [29], pleasant feelings [30], emotional 
processes like evaluating facial expression and empathizing [31]. 
Furthermore, crus I and crus II have been known to be crucial to verbal 
working memory [32, 33], episodic memory/self-reflection and salience 
detection [34], eyeblink conditioning [35, 36]. Given such diverse 
capabilities of crus I and crus II, it may not be surprising that cerebellar 
outputs to prefrontal cortex actually originates from cerebellar Purkinje 
cells located in crus I and throughout crus II.

In summary, this review discusses that the so called motor and 
cognitive channels from Purkinje cells to prefrontal cortex and motor 
cortex overlap in crus I and crus II of the cerebellar cortex. This 
challenges the theory that crus I outputs to the motor cortex, and crus 
II to the prefrontal cortex independently. Last, the questions of how 
this special overlapping structure of cerebellar Purkinje cells relates 
to behavioral function, and why crus I and crus II project to orofacial 
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Abstract
Most theories of cerebello-cortical pathway have assumed that the prefrontal cortex receives input from cerebellar 

Purkinje cells of crus II while the motor cortex receives cerebellar input from those of crus I. Here we discuss that, in 
this neural connection, cerebellar outputs to cerebral cortex are complex, and there is marked disagreement regarding 
the possibility that these projections might overlap within cerebellar Purkinje cells.
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representation rather than limbed representation of the motor cortex, 
remain to be answered. 
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