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Herpes simplex virus (HSV) is a neurotropic double-stranded DNA 
virus which includes the HSV-1 and HSV-2 subtypes. HSV is composed 
of an inner DNA core, a capsid (e.g. VP22), the tegument, and an outer 
envelope, which is a lipid membrane containing glycoproteins. HSV-
1 infects 60-80% of people worldwide and causes infectious corneal 
blindness, the common cold sore and potentially fatal encephalitis 
[1,2]. HSV is one of the leading infectious viral pathogens found 
in immunocompromised hosts, such as transplant recipients [3]. 
HSV induces tissue damage including cell infiltration, perivascular 
inflammation and syncytial formation [3]. HSV initially infects the 
epithelial cells and then enters the sensory nerve terminals. During 
its life cycle in the sensory nervous system, HSV travels by retrograde 
transport to the neuronal cell bodies in the trigeminal ganglia, and then 
either enters latency or replicates. Replicated or reactivated HSV travels 
by anterograde transport out of the cell body to the central nervous 
system in addition to the peripheral mucosal membrane. 

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disease leading to the irreversible loss of neurons and the loss of 
intellectual abilities, including memory and cognition. According to 
the National Institute on Aging, AD afflicts 2.5-4.5 millions Americans 
and 18 million people worldwide. AD is pathologically characterized 
by intracellular neurofibrillary tangles and extracellular senile plaques. 
While the pathogenesis of AD is still elusive, it is widely recognized 
that APP plays a central role in the pathogenesis of AD based on the 
following evidence: i) APP is the precursor to beta-amyloid peptide 
(Abeta), a main constituent of senile plaques which causes cell death, 
synaptic defects and memory impairment [4-9]; ii) Disruption of 
APP-mediated axonal transport contributes to the neurodegeneration 
associated with AD [10]; iii) Aberrant APP phosphorylation results in 
Abeta production, cell stress and degeneration [10-12].

 RT-PCR studies reveal the existence of HSV-1 DNA in plaques of 
frontal and temporal cortices in post-mortem brains of both sporadic 
and familial Alzheimer’s disease [13-16]. The presence of HSV-1 in 
the brain is considered to be a risk factor for AD in elderly people 
who carry the apolipoprotein E ε4 allele [17]. Viral proteins of HSV-
1 interact with many AD susceptibility genes or proteins [18]. In 
addition, epidemiological study demonstrates that HSV-1 reactivation, 
as measured by seropositive IgM, is a high risk factor for AD and that 
HSV-1 chronic infection contributes to the progressive brain damage 
characteristic of AD [19]. A more recent similar study shows that anti-
HSV IgG antibody avidity is higher in AD patients and much higher 
in subjects with amnestic mild cognitive impairment (a prodromal 
stage of AD) than in controls, suggesting that seropositve IgG could be 
adopted as a biomarker for early diagnosis of amnestic mild cognitive 
impairment as well as AD [20]. These data suggest a link between HSV 
infection and AD pathogenesis. There have been numerous studies 
focused on deciphering the mechanisms behind this link.

A plethora of evidence shows that HSV-1 infection affects APP 
proteolytic processing, transport, phosphorylation and distribution 
[21-27]. A viral envelope glycoprotein B (gB) contains a sequence 
homologous to the carboxyl-terminal region of Abeta, a cleavage 
product of APP [21]. A peptide derived from gB accelerated the 
formation of Abeta fibrils which were toxic to primary cortical neurons 

[21]. Acute HSV-1 infection affects APP proteolytic processing both in 
vitro [21,22] and in vivo [23]. APP is co-isolated with HSV particles 
from HSV-1-infected Vero cells and isolated HSV-APP particles are able 
to transport in squid axon when injected into squid axon, suggesting 
a role of APP in mediating viral transport [25]. Further experiments 
in our lab have confirmed the co-localization of HSV-1 particles with 
APP inside cells under epifluorescent and electron microscopes [26]. 
A time-lapse live confocal imaging reveals that HSV-1 particles travel 
together with APP inside living cells [26]. This dynamic interaction 
between HSV-1 and APP results in pathological consequences: HSV-1 
infection decreases the average velocity of APP vesicles and causes APP 
mal-distribution in infected cells [26]. 

Compromised transport and mis-localization of APP could 
contribute to increased APP proteolysis with HSV-1 infection [24], 
which may consequently cause cellular injury. In addition, HSV-1 
infection of human neuronal cell line increases the phosphorylation 
of tau proteins, the main component of neurofibrillary tangles, one of 
the hallmarks of AD [28]. A viral kinase, UL13, which phosphorylates 
HSV-1 VP22, may phosphorylates human tau proteins [16]. Moreover, 
treatment of HSV-1-infected cells with acyclovir, the main antiviral agent 
used for treating HSV-1 infection by targeting viral DNA replication, 
substantially decreases the amount of Abeta and phosphorylated tau 
protein, two culprits of AD [29]. This finding not only supports the 
concept that HSV infection is involved in AD pathogenesis, but also 
opens up a novel window to slow or stop the progression of AD with 
antiviral strategies.

Collectively, HSV-1 infects a wide range of neurons and epithelial 
cells and transports bidirectionally in neurons and epithelial cells. 
HSV functions as intact functional machinery actively usurping a 
variety of cellular biological machineries by interacting with cellular 
proteins for its entry, transcription, DNA replication and egress. HSV 
infection and repeated reactivation result in the hyper phosphorylation 
of tau proteins as well as the disturbance of biogenesis, subcellular 
localization, phosphorylation and proteolytic processing of APP. Given 
the prevalent infection of HSV among people worldwide, the link of 
chronic HSV infection to AD and the potential use of HSV as a delivery 
vector for gene therapy, it is imperative to dissect the mechanisms for 
interaction between HSV and cellular proteins that are associated with 
AD. Clinical trials for evaluating the efficacy of antiviral drugs in the 
treatment of AD are urgently needed.
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