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Abstract

We analyzed hematopoietic phenotypes in Peromyscus leucopus (PL) mice at young (2-9 months), middle (22-23
months) and old (33-46 months) ages aimed at characterizing age-associated changes in this unique rodent
species. We found a significantly higher number of monocytes in old PL mice in peripheral blood, and higher
proportions of CD44+ cells in blood, spleen and bone marrow in old PL mice than in middle and young counterparts.
We conclude that elevated blood monocyte counts and up-regulated hematopoietic cell CD44 expression are two
useful aging biomarkers for PL mice.

Introduction and Methods
Peromyscus leucopus (PL) mice are the most populous rodent

species that reside in northeastern United States [1]. These animals,
nicknamed “white-footed” mice, have distinctive high agility and long
lifespans and are taxonomically distant from the frequently-used
laboratory mice Mus. musculus (MM) [2-5]. Relative to MM mice, PL
mice have fewer platelets and more monocytes [6] and their peripheral
blood mononuclear cells have drastically shorter telomeres [7]. The
characteristic short telomere and long lifespan in PL mice provide an
interesting combination that favors the utility of PL mice as a potential
model for aging studies.

Age-related phenotypic changes have been well studied in MM
mouse models. Aging was found to cause hematopoietic lineage bias
toward myeloid cells [8]. One specific change with age is the expression
of CD44, a transmembrane glycoprotein present on the surface of
many cell types. Proportions of CD44+ cells are significantly higher in
CD4 and CD8 T cells in old mice, which correspond to memory T cell
accumulation [9-11] and gamma interferon (IFN-γ)-producing T cell
enrichment [12]. Changes in CD44 expression have also been
described in other species [13,14]. Age-associated increase in CD44+

CD4 cells are found in the spleen of Dark Agouti rats [15]. In rat aorta
endothelium, CD44 expression increases in an age-dependent fashion
[16].

In the current study, we obtained PL mice from Peromyscus Genetic
Stock Center (PGSC) at the University of South Carolina (Columbia,
SC) to study age-associated changes in hematopoietic tissues. The PL
mouse stock was originated from 38 founders captured near Linville
Fall, North Carolina following restricted random breeding in captivity
avoiding sister-brother mating [17]. Young (2-9 months) and middle-
age (22-23 months) PL mice were produced at National Institutes of
Health from breeders obtained from PGSC, while old PL mice (33-46
months) were originally obtained from PGSC at young age. All animal
studies were approved by the Animal Care and Use Committee at the
National Heart, Lung, and Blood Institute.

Blood was collected from retro-orbital sinus and complete blood
counts (CBCs) were analyzed using a HemaVet 950 analyzer (Drew

Scientific, Inc. CT). Mice were euthanized by CO2 inhalation from a
compressed source. Bone marrow (BM) cells were extracted from
bilateral tibiae and femurs, while spleen single cell suspension was
obtained by homogenizing the spleen with a Kimble tissue grinder. BM
and spleen cells were filtered through 95 μM nylon mesh and counted
using a Vi-Cell counter (Coulter Cooperation, FL). Red blood cells
(RBCs) in blood, BM, and spleen cells were lysed with ACK lysing
buffer. Nucleated cells were stained with allophycocyanin (APC)-
conjugated anti-mouse CD44 (clone 1M7) antibody (BD Bioscience,
San Diego, CA) on ice for 30 minutes. Stained cells were acquired and
analyzed on FACSCanto II flow cytometer using the FACSDiva
software (Becton Dickson, San Diego CA). Data from CBC and flow
cytometry were analyzed by GraphPad Prism 6 statistical software
through variance analyses and multiple comparisons, and were shown
as means with standard errors.

Results and Discussion
A significant change we observed was a higher number of

circulating monocytes in old PL mice (0.46 ± 0.07 × 109/L) relative to
young (0.26 ± 0.06 × 109/L) and middle-age (0.26 ± 0.07 × 109/L)
animals, suggesting a potential age-related hematopoietic skewing
toward myeloid lineage (Figure 1A). There were no age effects on red
blood cells, white blood cells, neutrophils, lymphocytes, or platelets
(Figure 1A). Our observation was consistent with age-related myeloid
lineage skewing reported in the MM mouse model, in which aging is
associated with increased self-renewal and reduced lymphoid potential
in hematopoietic stem cells [8]. In human studies, aging is also
associated with higher blood monocyte counts with a specific
expansion of the more mature non-classical monocytes [18]. In elderly
individuals, CD34+CD38+CD90-CD45RA+/-CD10- and CD34+CD33+

myeloid progenitor cells persisted while CD34+CD38+CD90-CD45RA
+CD10+ and CD34+CD19+ B-lymphoid progenitor cells decrease,
indicating age-associated lineage bias toward myeloid differentiation
[19,20]. Thus, increased monocytes with enhanced myeloid
differentiation is a shared aging biomarker.
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Figure 1: Age associated changes in hematopoietic tissues in
Peromyscus leucopus mice. Young (2-9 months, N=18), middle
(22-23 months, N=11) and old (33-46 months, N=7) PL mice were
bled from orbital sinus to measure complete blood counts and were
then euthanized to extract cells from spleen and BM. (A) There
were no changes with age in red blood cells, white blood cells,
neutrophils, lymphocytes or platelets but there was a significantly
higher number of monocytes in old than in young and middle-age
animals. (B) Anti-mouse CD44 antibody was able to stain positive
cell populations in peripheral blood, spleen, and BM in PL mice.
The proportions of CD44+ cells were significantly higher in old than
in young and middle-age PL mice. *, P< .05; **, P< .01; ****, P< .
0001.

Another change we observed in old PL mice was an increase in the
proportion of CD44+ cells in nucleated cells from peripheral blood
(25.0 ± 2.0%, 19.6 ± 2.6% and 41.1 ± 2.9% for young, middle and old
animals), spleen (9.9 ± 1.9%, 9.7 ± 2.5% and 19.9 ± 2.8%), and BM
(60.7 ± 4.4%, 60.2 ± 5.7% and 74.9 ± 6.4%, Figure 1B). In general, the
proportion of CD44+ cells was BM>peripheral blood>spleen regardless
of age (Figure 1B). Age difference in CD44 expression was statistically
significant in peripheral blood (P<0.0001) and spleen (P<0.01), and
was marginally significant in the BM (P<0.07). Our finding of age-
related CD44 up-regulation in PL mice was in agreement with
observations from MM and other animal models. The utility of
increased CD44 expression as an aging biomarker is originally

characterized in the MM mouse models [9-12]. In a rat model of
experimental autoimmune encephalomyelitis (EAE), increased
proportion of splenic CD44+CD4+ T cells is observed in aged rats,
leading to entrapping of activated CD4+ cells in the spleen to restrict
EAE development [15]. In a burn-associated wound-healing rat model,
CD44 expression on the wound bed is significantly increased in aged
rats relative to young rats, which correlates to a delayed wound healing
[21]. In aging endothelial cells, epigenetic activation of CD44
expression leads to de-methylation in the promoter regions of the
CD44 gene to cause high CD44 expression on cell surface that
increases adhesion to monocytes [22]. Thus, age-related CD44 up-
regulation not only serves as a phenotypic marker but also exerts
interference with normal cellular activities. We were unable to pinpoint
age-related CD44 up-regulation to specific hematopoietic cell types in
PL mice because antibodies (such as CD3, CD4, and CD8) specific for
MM and human do not recognize hematopoietic cells from PL mice
[6].

We also examined BM cellularity and morphology in PL mice but
found no difference among the three age groups. BM cells from PL
mice were capable of forming hematopoietic colonies when cultured in
vitro in MethoCult media supplemented with hematopoietic cytokines
for MM animals, however, the number of colony-forming cells was few,
especially in young mice, and the time of colony formation was
delayed in PL mice (Data not shown). A possible explanation is that
hematopoietic cytokines and their receptors might be different
between MM and PL mice.

Despite shared features of appearance, PL mice differ drastically
from MM mice in their higher physical agility [17], longer lifespan [4],
and shorter telomeres [7]. PL mice belong to Genus Peromyscus of
Subfamily Sigmodontinae while MM mice belong to Genus Mus of
Subfamily Murinae in the taxonomic hierarchy, which means that
these two species have been separated from each other for millions of
years.

In summary, we identified two aging biomarkers in PL mice: 1)
elevated circulating monocytes; and 2) up-regulated CD44 expression
on hematopoietic cells. Both biomarkers were detected at old age of
33-44 months, not at middle age of 22-23 months. The delayed onset of
both biomarkers in PL mice, relative to those in conventional MM
mice, was likely related to the long lifespans in PL mice.
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