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Introduction
Landmines and other Explosive Remnants of War (ERW) are 

an enduring legacy of conflicts [1]. Mines and ERW-impacted areas 
threaten the subsistence of their inhabitants by denying them the 
access to vital resources such as forests, agricultural land, pasturage, 
and water [2]. Thus, landmines and ERW propagate socio-economic 
underdevelopment and environmental degradation long time after their 
military purposes have been served.

In this paper, a risk mapping framework is proposed. Definitions 
of risk are commonly probabilistic in nature, “referring to the potential 
losses from a particular hazard to a specified element at risk in a 
particular time” [3]. Landmine and ERW risk is the probability of 
harmful consequences or likelihood of losses resulting from interactions 
between: (i) landmine and ERW hazards, i.e., the occurrence of landmine 
or ERW events; (ii) element at risk, i.e., population, its livelihoods and 
assets in an area in which landmine or ERW events occurred; and (iii) 
vulnerability, i.e., the susceptibility of exposed elements to suffer adverse 
effects when impacted by landmine and ERW events. Expressed in 
another way, risk, R, is determined by [3]:

R=V·E·H. (1)

where V is the vulnerability, E is the cost or amount of the ‘element 
at risk’, and H is the hazard probability.

This paper explores the Kernel Density Estimator (KDE) to define 
landmine and ERW hazard, vulnerability, and element at risk. Since 
the aim is to provide insights into the populations and/or locations at 
risk to landmine and ERW impacts both on a broad and local scale, the 
concept of ‘hotspots’, is particularly useful. Thus, we apply KDE to derive 
‘hotspots’. They provide a visual representation of exposure aided by a 
geo-spatial representation of ‘priority areas’ for mine action planners to 
focus on.
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Abstract
Landmines and Explosive Remnants of War (ERW) continue to represent a significant nuisance for society in 

affected countries. Coping with humanitarian and development activities, mine action aims at both, reducing the impacts 
of the presence of landmines/ ERW on the population, and ultimately returning cleared land to the communities. 
These are the main tasks of mine action decision makers. This study combines landmine/ERW contamination data 
with explanatory variables that contain information about underlying targets. They are integrated into a risk mapping 
framework using Geographic Information Systems with other information sources, such as remote sensing. The aim of 
this paper is to provide insights into the populations and/or locations at risk caused by landmine and ERW impacts on a 
broad and local scale. Thus, the concept of ‘hotspots’ is particularly useful because it provides a visual representation 
of exposure, aided by a geo-spatial representation of ‘priority areas for mine action planners to focus on. We apply the 
Kernel Density Estimator (KDE) to derive such ‘hotspots’. KDE is proposed as the basis to define landmine and ERW 
hazard, vulnerability, and element-at-risk maps, which enable producing a final output, the landmine/ERW risk map. This 
is accomplished by using an adaptive kernel bandwidth for datasets with highly heterogeneous spatial distributions, and 
a problem specific method for generating point samples from polygon data, before using them as inputs for KDE. The 
geo-statistical model presented here is a time-and-cost-efficient method to construct a landmine risk map, that is as 
representative as those produced by mine action actors. It can be used as a complement to the risk area maps made 
by these actors because they are slightly different but show a large degree of overlap. Moreover, the method helps 
revealing the variables which are the most linked to landmine/ERW-related events in the study area.
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The paper is organized as follows. Section 4 introduces the 
terminology and standard processes used in Humanitarian Mine Action 
(HMA). Section 5 presents mine action data, as well as commonly used 
explanatory data. To estimate landmine and ERW threats in affected 
countries, Section 6 details the proposed risk mapping methodologies, 
namely, KDE and the risk analysis framework to investigate possible 
factors linked to the risk generated by landmines and ERW. Each 
approach achieves a different objective, for instance:

(i) KDE helps estimating the landmine/ERW hazard density. It
allows discovering variations in contamination density, and
helps visualizing at-risk populations; and

(ii) The risk analysis framework with its three components: hazard,
vulnerability and element at risk [4] helps in discovering the
risk-prone areas under the presence of certain risk indicators,
and social, economic and environmental conditions. This allows 
evaluating the risk on populations, the impact on populations
(with socio-economic considerations) and the impact on
infrastructures.

In Section 7 we illustrate the proposed methodology using data-sets 
from Bosnia and Herzegovina (BIH). Finally, in Section 8 we draw some 
conclusions and a discussion of the use of the proposed maps.
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Background on Humanitarian Mine Action
The international response to the landmine and ERW problem 

is referred as Humanitarian Mine Action (HMA). HMA is defined 
as the set of “activities which aim to reduce the social, economic and 
environmental impact of mines and ERW including unexploded sub-
munitions” [5]. Compared to other humanitarian actions, mine action 
activities are ‘standardized’. Indeed, the International Mine Action 
Standards (IMAS) have been defined under the United Nations Mine 
Action Service (UNMAS), and currently continuously revised by the 
Geneva International Centre for Humanitarian Demining (GICHD). 
GICHD is also the developer and maintainer of the Information 
Management System for Mine Action (IMSMA), being a GIS-based 
information system to manage all data concerning HMA activities.

HMA activities normally start with a task known as ‘impact survey’ 
which is defined as “an assessment of the socio-economic impact caused 
by the actual or perceived presence of landmines and ERW, in order 
to assist the planning and prioritisation of HMA programmes and 
projects” [5]. The impact survey is the process by which a comprehensive 
inventory of: (i) topographic information (both natural and man-made 
features such as land-cover, populated areas, transportation routes and 
facilities, and other features such as hospitals, among others); and (ii) 
contamination information. The contamination information is of two 
types: (i) all locations of known mine accidents/incidents, and (ii) all 
reported or suspected locations of mines or ERW and Unexploded 
Ordnance (UXO) contamination, denoted as Suspected Hazardous 
Areas (SHA) [5]. Generally, an SHA does not have a precisely known 
perimeter, only a location and an estimated quantity of landmines and 
ERW. An SHA could also represent a known laid minefield; in such 
a case, it is represented by either a location and estimated number of 
landmines and ERW, or as a polygon (minefield extent), contamination 
type, and if available, the minefield pattern.

The collected mine action data, being mine incidents/accidents 
(point data), minefield records (point or polygon data), and SHA (point 
or polygon data), are generally entered in a mine action information 
database, such as IMSMA, for further use. This information allows 
assessing the impact of the landmine and ERW problem on the affected 
areas both at local and global (country) levels. The landmine impact 
is a simple scoring rule estimated as a weighted sum of 13 variables 
which includes the number of recent victims, certain livelihood and 
institutional blockage variables (access to roads, cultivated area, rivers 
among others) characterizing the mine affected community under 
study, and binary variables indicating whether mines or UXO have been 
present. The mine impact score system permits a classification of the 
mine affected communities into three classes: ‘Low’, ‘Medium’ and ‘High’. 
The working hypothesis is that communities scoring high are most likely 
the ones in which HMA has the greatest potential for reducing future 
suffering.

Starting from SHAs, identified through the impact survey, the land 
release process [6] is as follows. First, a non-technical survey is done on 
an SHA to define the borders of one or several Confirmed Hazardous 
Areas (CHAs) where the presence of mine/ERW contamination has 
been confirmed on the basis of direct evidence. CHAs are normally 
represented as polygons, and generally include information about the 
suspected type of contamination, topography, access, vegetation, and 
potential economic use of the area after clearance. Parts of the SHA that 
are not included in the CHAs are called cancelled areas. The second 
step, the technical survey, allows identifying and delineating, within a 
CHA, one or several Defined Hazardous Areas (DHAs), represented as 
polygons. The CHA can be released, while the DHA require full clearance. 

In the remaining part of this work, we will use the term hazardous area, 
as a generic term for an area perceived to have landmines and/or ERW 
(SHA, CHA, DHA) [6].

Landmines and ERW Risk Indicators: Explanatory 
Variables

Since the work of [7], space and airborne survey including 
Unmanned Aerial Vehicle (UAV) have demonstrated the usefulness 
of remote sensing to collect visible indicators of landmines and ERW 
in a contaminated area. Landmines and ERW risk indicators represent 
two-dimensional object features which are signs of landmine/ERW 
deployment in its proximity. Many of these indicators can be identified 
through visual inspection or image analysis of remote sensing imagery 
[8-10]. The picture in Figure 1 illustrates some indicators that were 
collected with the aid of an UAV during the SAFEDEM feasibility study 
in 2011 in Bosnia and Herzegovina.

Building ruins, craters and holes, and destroyed military equipment 
are some of such indicators. Such indicators are often represented as 
point data. Supported by the idea of using approaches based on land-
cover/land-use change detection that involve historical images, the 
following items could be considered as remnants of war indicators [11]: 
tracks that are no longer in use, abandoned agriculture/pasture areas, 
and edges of forests. Such indicators are often represented as polygons.

In order to construct a geo-statistical model for landmine risk 
mapping, we first need to define a set of explanatory variables that 
capture the relationship between the spatial pattern of the target variable 
(landmine incidents, hazard areas, minefields) and the surrounding 
geographic area. The following variables are often considered [12]:

yy Digital elevation model, which allows estimating elevation and 
slope information for characterizing the topography of the area.

yy Land-cover and land-use, which are linked to the socio-
economic development or blockage of a mine affected area. The 
five main used categories are built-up areas, agricultural areas, 
forests/semi-natural areas, wetlands, and water bodies.

yy Roads, railways, trails, tracks and paths, being the most 
commonly used means of transportation for people and goods. 
They give access to work places, educational centres, service 
facilities such as hospitals, government offices, and other sites. 
Frequently, their blockage is used as an inhibition for freedom 
of movement.

 

Figure 1: UAV image showing a building ruin with ERW devices.
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yy Rivers, which are a source of fishing, transportation and other 
activities, such as irrigation.

yy Buildings, which are commonly gauges of permanent human 
activity.

Methods for Landmines and ERW Risk Mapping
Kernel density estimation

KDE [13] is a non-parametric method that enables the quantification 
of the extent of a given spatial phenomenon. Maps generated applying 
KDE have been widely used to analyze and visualize spatial distributions 
of discrete presence or counts data, which are represented as point 
locations, but also for identifying hotspots [14]. The choice of using 
KDE is based on the observation that the risk coming from a known 
incident gets lower by increasing the distance to its location. This idea 
agrees with Tobler’s first law of geography: “Everything is related to 
everything else, but near things are more related than distant things” 
[15]. KDE has been widely applied in domains such as seismic hazard 
analysis [16], crime mapping [17], public health control [18], public 
transport [19], environmental risks mapping [20], biomass [21], and 
wildlife home range estimation [22,23], among others.

In the case of landmine and ERW risk mapping, KDE helps in: (i) 
visualising administrative divisions where highest concentrations of 
landmine/ERW are located (also known as hotspots), (ii) visualizing 
at-risk populations through maps that combine landmine/ERW 
hazards and population data (population at risk=Presence of 
population × Presence of hazards), (iii) examining possible relations 
with transportation features (e.g., near roads), and (iv) understanding 
the dynamics of the contamination in the case of temporal data. 
In a previous work [24], the application of KDE was explored as an 
approach to analyze variations in mine incidents density. In Ref. [11], 
it was further investigated the analysis as part of a GIS-based weighted 
linear combination approach, where points, lines and polygon-
shaped variables were modelled as the result of a KDE mapping. The 
concept has been further enriched by Ref. [25] by considering highly 
heterogeneous spatial distributions, and also by considering the use of 
non-point data such as polygons. For polygon data such as SHAs, Ref. 
[25] proposed infilling the polygons with points before using them as 
inputs in the kernel density estimation. The authors pointed out that 
mapping using KDE applied to points and centroids of polygons “can be 
used to show more details, is less sensitive to the Modifiable Areal Unit 
Problem (MAUP), preserves areas of low contamination, stores data at 
the national level and is likely to encourage the sharing of information”. 
In this work, we use the same idea; however, we propose a new approach 
for sampling points within polygons representing mine field polygons 
and Hazard Areas. KDE is a suitable method for summarizing and 
visualizing the underlying properties of point patterns. It can be used to 
estimate the density at any location in the study area and to transform 
the spatial points into a continuous 3D surface. The approach consists 
in dividing the study area into regular grid cells and estimating a density 
value for each grid cell according to the selected characteristics of the 
spatial points. In addition, quantitative analysis can be applied based 
on these grid cells. The density value can be estimated by the formula:
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were f(X) is the density value at a location X of the grid cell 
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the KDE function is dependent on an arbitrarily specified bandwidth 

size. Several statistical methods have been suggested to find an 
optimal bandwidth, such as Likelihood Cross Validation (LCV), Least 
Squares Cross Validation (LSCV), Biased Cross Validation (BCV) and 
Smoothed Cross Validation (SCV) [26-29], among others. Bandwidth 
selection has a significant effect on the visualization of landmine and 
ERW events [24,25]. In [25], the bandwidth was adjusted to the input 
data using a user-defined parameter. The authors select the bandwidth 

as the average distance to the k-th nearest neighbour, with k=round 
.n p 

  , where n is the number of points and P is a user-provided 

parameter to adjust the detail level of the map. The parameter k “reflects 
the degree of clustering and the spacing of points, rather than the extent 
of the study area or the point dataset size” [25].

In this study, we adopt the adaptive bandwidth approach given that 
it has the advantage of providing constant precision for the estimate over 
an entire region. Indeed, as also mentioned in Ref. [30], in situations 
where the risk is more concentrated in rural regions, as is the case for 
landmines and ERW related risk (e.g., due to sparse data), the adaptive 
risk estimator benefits from variance stabilization when it is compared 
to the fixed bandwidth approach. In our implementation, the adaptive 
bandwidth method of the sparr R-package [31] has been used. It adopts 
the bivariate Gaussian kernel function. The adaptive smoothing is 
calculated by using Abramson’s method [32]. In this approach, for each 
point data location Xi, the bandwidth h(i) is given by:

h(i)=h0f(Xi)
−1/2γ−1.                                                                           (3)

where h0 is a secondary smoothing multiplier known as the global 
bandwidth, and γ is the geometric mean of the f(Xi)

(1/2) terms, serving 
to alleviate the dependency on the scale of the recorded data. This 
formulation is quite natural since the amount of smoothing depends 
inversely on the local amount of data. The unknown f(Xi) should be 
replaced by a pilot density, which in its turn is a fixed bandwidth kernel 
density estimate constructed with a pilot bandwidth h. More details are 
found in Ref. [13].

Dual KDE: Even if the KDE approach can be used for a wide 
range of tasks, in some situations knowing the spatial distribution is 
not enough. Indeed, when dealing with risk it is useful to analyse the 
locations distribution with respect to another ‘factor’, for example the 
underlying population. The secondary factor can be represented as 
point or linear features. The first case occurs, for example, when one is 
interested in analysing locations of a disease against the urban centres 
which are represented as points, as in Ref. [33]. The second case is 
used, for example, when analysing traffic accidents along streets as in 
Ref. [34]. Dual KDE is a good approach to reveal differing or similar 
patterns between two different geographic distributions, allowing 
a more succinct interpretation. It is obtained by producing a density 
surface that depicts the estimations for the relationship between the 
two considered variables, expressed as a continuous surface [35]. These 
estimates are calculated by overlaying a grid covering the study area, 
in which the distance from each cell to every point within a specified 
distance is measured and weighted based on its proximity to the cell 
origin. The overlay between the two densities can materialize any 
mathematical expression representing the desired relationship. For 
instance, in Ref. [36], the authors subtract the ‘typical’ (or average) total 
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crime value, from the ‘high period’ (i.e., with the biggest crime scores) 
crime value, to represent changes between the ‘typical’ daily crime 
values and the ‘highest’ daily crime values. When dealing with risk 
related topics, the natural logarithm of the density ratio is an advised 
choice [37]:

Log ratio of densities=Ln[f(xj)/g(yj)]                                                    (4)

where f(xj) is the KDE for the primary set of locations points and 
g(yj) is the KDE for the secondary set, both f(xj) and g(xj) are estimated 
as explained earlier in Section 6.1. The log ratio is used for cases where 
a variable is spatially skewed, such that most reference cells have very 
low density estimates, while a few have very-high density estimates. 
Converting the ratio into a log function will tend to attenuate the spikes 
that occur. In this study, we use the dual KDE to produce maps which 
are used to represent vulnerable areas as it will be detailed in Section 6.2.

Disaster risk analysis
The concept of spatial risk has been traditionally linked to natural 

sources, such as cyclones, droughts, floods, earthquakes, volcanoes, 
landslides, among others [38].

In this work, we adopt the approach proposed in Ref. [3] to quantify 
the risk R (see Equation 1 in Section 3). Examples of applications 
using such principle are listed in Table 1, along with the used hazard, 
vulnerability, and element-at risk parameters. In the following sections, 
we detail the proposed approach for calculating hazard, vulnerability, 
and element at risk, for landmine and ERW risk mapping. The final risk 
map is calculated as the product of the unity-based normalization (i.e., 
scaling in the range from 0 to 1) of each component.

 Hazard: In general, a hazard is defined as “a dangerous phenomenon, 
substance, human activity or condition that may cause loss of life, 
injury, or other health impacts, property damage, loss of livelihoods and 
services, social and economic disruption, or environmental damage” 
[43]. Hazards are described quantitatively by the likelihood frequency of 
occurrence of different intensities for different areas, as determined from 
historical data or data analysis, and they are expressed as probabilities. 
Some studies used KDE as a method to estimate hazard. For example, [20] 
conducted a risk assessment of environmental toxins by incorporating 
the kernel density approach for the visualization of varying densities 
within the study region. The authors used KDE to analyse the spatial 
distribution of the risk-related scores of 53 facilities subject to the Toxic 
Release Inventory (TRI) program, to assess the individual chemical 
releases, the relative toxicity and proximate populations.

In our study, the hazard generated by landmines and ERW expresses 
the probability of finding an incident, minefield or hazard area in a 
certain region. We use the KDE-based map as basis to identify areas 
where landmine and ERW hazards are likely to occur. The data used 
in this study to create hazard maps consist of (i) landmines and ERW 
incidents/accidents, represented as points, (ii) minefields, represented 
as points or polygons, and (iii) hazardous areas represented as polygons. 
To apply KDE, the polygon data should be transformed to point data. 
This can be done by reducing the polygons to their respective centroids 
before applying the KDE procedure. Such approach does not take into 
account the distribution/number of the events (being landmines and/or 
ERW) within the polygon. To obtain a representation closer to reality, 
we propose filling each polygon p with Np=Ap.dPD random points, with 
Ap the area of the polygon p in km2 and dPD the density of the mine 
action point data within the ‘very-high risk’ area. Here, the density, dPD, 
is defined as the number of points/km2, obtained as follows. Let PD 
denote the set of all reported incidents/accidents and minefield points, 
within the study region. We first apply KDE on PD, then we classify 
five categories of hotspots, using the Jenks natural breaks classification 
[44]. Natural-breaks are designed to determine the best arrangement of 
values into different classes according to their statistical characteristics; 
it requires an iterative process that seeks to minimize the variance within 
classes and maximize the variance between classes [44]. The method is 
extensively applied to classify and visualize geographic data. We chose 
this method to classify the grid cells of the KDE density surface into five 
(5) Class Num classes, and label each grid cell using the corresponding 
Class Num to indicate the strength/severity of the hazard of the grid 
cell. The considered five classes are denoted as very-high, high, medium, 
low and very-low. Within the top category (denoted as ‘very-high risk’) 
we count the number, N, of points as concentrations of exceptional 
vulnerability. Finally, dPD=N/A, A being the area covered by of the ‘very-
high risk’ category, expressed in km2. The final hazard map is obtained 
by applying KDE on a set of points, denoted as TP, consisting of the 
above defined PD data augmented with randomly generated points 
within 200-meter buffers for PD, mine field polygons and hazard area 
polygons.

Vulnerability: In general, vulnerability is “the condition 
determined by physical, social, economic and environmental factors 
or processes, which increases the susceptibility of a community to the 
adverse impact of a hazard” [45]. Vulnerability can be calculated in the 
form of a vulnerability index (V I), as the average of all the different 
type of vulnerabilities e.g., social vulnerability, physical vulnerability 
and environmental vulnerability [40]. The increasing or decreasing 

Risk References Hazard layer Vulnerability layer Element-at-risk layer

Malaria [39]
Elevation, slope, distance to 

breeding sites and to streams 
and wetness index

Distance to health facilities per 
population index

Reclassified land use or land 
cover image file on the basis 

of malaria susceptibility

Petroleum fire [40]

Intensity (amount of storage 
of each petroleum material) X 
Probability (no. of storage in 

each ward) / Area

SV (Social Vulnerability)+PV (Physical 
Vulnerability)+EnV (Environmental 
Vulnerability)+ECV (Economical 

Vulnerability)+CIV (Critical Infrastructure 
Vulnerability)

Population / Area

Natural and man-made hazards [41] Storm, earthquake, flood, man-
made hazard Population, assets, lifelines

Faults, vegetation, topography, 
toxic sites, nuclear facilities, 

terrorism hot spots

Landslides [42]

Lithology, faults, altitude, slope, 
land-cover, road network, 

hydrography, geomorphology, 
maximum daily precipitation, 
peak ground acceleration, 

physical geography

Regions, districts communities
Buildings, population, roads, 

pipelines, crops, forests, 
protected areas

Table 1: Applications of risk quantification.
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vulnerability index indicates susceptibility of community for one 
particular hazard. Several possibilities are available for the estimation 
of the vulnerability. For example, it can be quantified by using methods 
which refer to the susceptibility of the element at risk (e.g., people or 
houses) with respect to the hazard [46]; this method requires detailed 
measures of the extent of the involved elements, which is often very 
limited. For estimating vulnerability, Ref. [47] involves the use of 
multicriteria analysis, weighting and summing up factors such as 
distance to services, infrastructure, and population density. Ref. [48] uses 
a GIS-based method with the different themes that constitute the Corine 
Land Cover inventory of the study area to perform the environmental 
vulnerability assessment to volcanic ash-fall. In our study, we quantify 
vulnerability as:

V I=PV.EnV                                                                                (5)

where PV is the physical vulnerability and EnV is the environmental 
vulnerability.

The physical vulnerability (PV) is expressed in terms of exposure 
to unsafe conditions. The population within the study region which 
is found to be dangerously close to the potential sources of threat, 
being landmine and ERW, is considered as physically vulnerable. 
As we do not have population information, in our implementation, 
the PV is the resulting map of a dual KDE map, contrasting the mine 
action point data TP, against building (or cultivated areas) locations. 
The environmental Vulnerability (EnV) is defined as potential for 
environmental degradation due to the existence of a hazard. In our case, 
it can be calculated as the amount of abandoned land per area unit, for 
zones with different hazard levels. As measure of abandoned land, we 
use the vegetation changes information obtained using remote sensing 
data [11]. The EnV is obtained using dual KDE, contrasting the mine 
action point data TP, against centroids of zones with vegetation changes 
(or risk indicators points).

Element at risk: In general, the element-at-risk factor includes 
persons, animals, infrastructures and activities in a particular area, that 
may be adversely affected (directly or indirectly) by the analyzed hazard. 
The choice of the element-at-risk factor depends on the objectives of the 
risk assessment, and the available information.

The amount of element at risk, can be quantified either in numbers 
(of buildings, people, among others), in monetary value (replacement 
costs, market costs and so on), in area, or in perception (importance of 
element at risk) [4].

In this study, the considered element-at-risk factor is the population, 
represented as built-up area from the land-use data. When such 
information is not available, we use cultivated area as factor representing 
the impact of landmines and ERW hazards on the agricultural activity. 
For the estimation of the element-at-risk map, E, we follow the hazard 
index method as defined in [4]. The method is based on map crossing 
of two maps denoted as DensMap and DensClas, respectively. DensMap 
represents the density of events within the area covered by the top 
hazard categories (i.e., very-high, high, medium) as obtained in Section 
6.2.1. Here events denote the set of points used to generate the hazard 
map, consisting of the mine action point data TP, as described in 
Section 6.2.1. DensClas is a distance to build-up area parameter class 
map obtained as follows: we first create a raster map defining for each 
cell the distance to build-up area (or cultivated area). The distances 
are then grouped, with natural-breaks, into five distance-to-built-up 
(or distance-to-cultivated) classes. Finally, for each of the five distance 
classes, DensClas is estimated as the density of events within the area 
covered by the class, which is in turn assigned to each cell within the 
class. Finally, the element-at-risk map is obtained as:

 ln DensClas
DensMap

E  
=  

       

                (4.5)

Results and Discussion
Study area

This paper analyzes two distinct mine-affected areas in Bosnia and 
Herzegovina (BIH). BIH has been heavily contaminated with mines 
and ERW as a result of the 1992-1995 conflict related to the break-up 
of the former Yugoslavia. In Southern and central BIH, mines were 
often used randomly, with few minefield records kept. According to 
BHMAC, the total suspected area at the end of 2013 was 1,218.5 km2 

or 2.4% of the total area of BIH. There are 19,185 minefield records 
in the database, which is estimated to represent merely about 60% of 
their total number. A general assessment of the mine situation in BIH 
identified 1,417 communities that have been affected by mines, of which 
136 communities were at high risk [49]. The BHMAC data information 
system and the diversity of environmental conditions make BIH a 
suitable study area for the application of the risk assessment approach 
proposed in this work.

The data used for the analysis were collected during two projects: the 
SAFE- DEM feasibility study during 2013-2014. Two study areas have been 
considered. The first study area is situated in the Dolac municipality in BIH 
(see Figure 2). A minimum bounding rectangle covering approximately 14.3 
square kilometres between coordinates 44°28’N and 44°30’N and 18°08’E 
and 18°11’E demarcated the area. It is a region irrigated by the Bosna river, 
with a mean elevation of 326 m (standard deviation of 103 m).

The second study area is situated in the Hadzici municipality in BIH 
(see Figure 3). A minimum bounding rectangle covering approximately 436 
square kilometres between coordinates 43°43’N and 43°53’N and 18°07’E 
and 18°28’E demarcates the area. The landscape of the region is very rugged, 
characterized by a mean elevation of 849 m (standard deviation of 330 m).

Figure 2: Dolac study area in Bosnia and Herzegovina.
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The set of explanatory variables used in this study, consist of land-
cover data (forest, pasture, cultivated, built-up area, shrubs, bare soil, 
water bodies), topographic data (elevation and hill-slope gradient), 
and a group of indirect indicators such as land-use changes and other 
infrastructure data, specific to each case study. For the KDE analysis 
and visualization, the used variables are listed in Tables 2 and 3, for 
the two considered study areas, respectively. For the risk analysis, the 
used variables are listed in Tables 4 and 5. The categorical variables have 
been obtained as follows: (i) for the considered variable (line or polygon 
border of the analysed feature), we first create a raster map defining for 
each cell the minimal distance to the considered variable; and (ii) the 
distances are then grouped with natural-breaks into five distance-based 
classes.

Kernel density estimation
Dolac region: As explained in Section 6.2.1, we calculated a KDE map 
that includes both, the original point data and other point locations 
representing the polygon-shaped mine fields and hazard areas. In this 
section, we illustrate the KDE results using the Dolac data. First, an 
adaptive KDE-based map is obtained using only the incident and mine 
field point data. In this map, the optimal pilot bandwidth is 332.6 m. 
Once the map is classified (on a five natural-break-based classification), 
the higher risk class is found to be characterized by incidents and 
minefield points density of 19.6 point locations per square kilometre. 
Thus, random points following such a density are generated over the 
polygon-shaped mine action data. Figure 4 shows the final adaptive 
KDE-based map obtained using an optimal bandwidth of 348.7 m. The 
resulting map highlights one very-high density sub-zone at the North-
East of the study area, surrounded by a sub-region of high density. There 
is also another high-density sub-zone in the South-West of the study 
area. Those areas can be chosen as priorities for further land release 
tasks (non-technical/technical survey and clearance). The figure also 
shows that the region designed as confirmed or suspected hazard area 
by BHMAC overlaps the predicted hazard obtained using KDE. This 
indicates that a KDE map calculated in the way we propose in this paper, 
can provide a preliminary prediction of landmines and ERW-related 
risk areas.

To illustrate the importance of using an adaptive bandwidth, we 
show in Figure 5 the KDE map generated using a fixed bandwidth. 

The optimal fixed bandwidth for all the points in this map was selected 
with the leave-one-out LSCV method [50]. Visual inspection allows to 
observe that all density levels have a wider extent than in the adaptive 
bandwidth-based map, as the bandwidth does not take into account the 
relative distance of the neighbours at each location point.

Overlaying KDE results on topographic data (elevation) and transport 
facilities as illustrated in Figure 6, one can notice a high-density of landmine 
and ERW risk in the South-West part of the study region, corresponding to 
a low altitude area near a road and railway. However, the high-risk zone of 
the NorthEast area is hilly with few tracks. Thus, we can infer two different 
landmines and ERW emplacement strategies: a blocking strategy to 
prevent the mobility of people, and a defensive strategy for observation 
and dominance. This is also confirmed in Figure 7 illustrating the land-
cover type corresponding to the high-risk areas.

Figure 3: Hadzici study area in Bosnia and Herzegovina.

 
Figure 4: Dolac: kernel density estimation. 

 
Figure 5: Dolac: kernel density estimation using a fixed bandwidth.
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Combining the mine action data with landmine and ERW risk 
indicators defined in the Table 2, we obtain the KDE map of Figure 8. By 
comparing Figures 4 and 8, one can notice that using the risk indicators 
as evidence of hazard, allows reducing the risk area and highlights the 
middle area of the study zone with a better overlap on the hazard area, 
defined as confirmed or suspected by BHMAC.

Disaster risk analysis
Dolac region: For the Dolac region, we estimated the hazard map 

as illustrated in Figures 9 and 10, obtained using the mine action data. 
The element-at-risk layer for this study area was estimated using as 
parameter the distance to cultivated areas represented as categorical 
variable as shown in Figure 11. The obtained element-at-risk map 
weighted according to Equation (5) is presented in Figure 12.

The final risk map is given in Figure 13. It highlights very-high 

to medium risk zones for the cultivated areas (Figure 14) where high 
landmine and ERW contamination is observed. Such map can be used 
along with the risk map produced by BHMAC or the hazard map 
of Figure 9 to prioritize the land release activities in high risk areas 
affecting access to agriculture areas.

Hadzici region: Figures 15-18 present the results for each one of 
the three intermediate maps used for the risk analysis in the Hadzici 
study area. Figure 15 illustrates the hazard map obtained using KDE 
applied to the mine action data and landmine and ERW risk indicators 
of the Table 5. The vulnerability analysis (Figure 16) presents the 
combined result of taking into account both, the presence of buildings 
and increased vegetation zones according to the intermediate dual KDE 
maps.

The element-at-risk layer for this study area was estimated using 
as parameter the distance to built-up areas represented as categorical 
variables as shown in Figure 17. The obtained element-at-risk map 

 
Figure 6: Dolac: kernel density estimation overlay on topographic and 
transport Facilities.

Figure 7: Dolac: kernel density estimation visualized together with land-
cover types.

 
Figure 8: Dolac: kernel density estimation for mine action data (including 
online-generated random points for mine field polygons and hazard 
areas) and risk indicators generated using an adaptive bandwidth.

 
Figure 9: Dolac: hazard map.
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weighted according to Equation (5) is presented in Figure 18. The final 
risk map shown in Figure 19 highlights the built-up areas more affected 
by very-high to medium risk zones (Figure 14), where high landmine 
and ERW contamination is observed. As illustrated in Figure 20, other 
very high and high risk zones overlap with several roads, showing how 
landmines and ERW are used as a blocking strategy to prevent the 

mobility of people. Together with the risk map produced by BHMAC, 
this risk analysis can be used to prioritize the land release activities in 
risk areas affecting the population safety and mobility.

Variable Type Source
Response (dependent)

Incidents and mine field points points BHMAC

Mine field polygons and hazard areas polygons BHMAC
Landmines and ERW risk indicators Craters and holes points SAFEDEM-DEMO

Potential risk areas Risk areas polygons BHMAC
Analysis variables (independent)

Land-cover and land-use polygons CLC EEA-based

Roads lines BHMAC
Railways lines BHMAC
Tracks lines SAFEDEM-DEMO

Topographic Elevation continuous ASTER GDEM

Table 2: Variables used for KDE analysis in the Dolac study area.

Figure 10: Dolac: vulnerability map.

 

Figure 11: Hadzici: categorical classes for agriculture areas.

Figure 12: Dolac: element-at-risk map.

 

Figure 13: Dolac: final risk map versus con_rmed risk area by 
BHMAC.
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Figure 14: Dolac: final risk map overlaid on the land-cover type 
cultivated areas.

Figure 15: Hadzici: hazard map.

 
Figure 16: Hadzici: vulnerability map.

 

Figure 17: Hadzici: categorical classes for built-up areas.

 

Figure 18: Hadzici: element-at-risk map.

Figure 19: Hadzici: _nal risk map overlaid with risk areas (BHMAC).



Citation: Alegria AC, Zimanyi E, Cornelis J, Sahli H (2017) Hazard Mapping of Landmines and ERW Using Geo-Spatial Techniques. J Remote 
Sensing & GIS 6: 197. doi: 10.4172/2469-4134.1000197

Page 10 of 11

Volume 6 • Issue 2 • 1000197
J Remote Sensing & GIS, an open access journal
ISSN: 2469-4134

 
Figure 20: Hadzici: final risk map overlaid with built-up areas and roads.

Variable Type Source
Response (dependent)

Incidents and mine field points points BHMAC

Mine field polygons and hazard areas polygons BHMAC
Landmines and ERW risk indicators Building 

ruins and other indicators points SAFEDEM-SADA

Potential risk areas Risk areas polygons BHMAC
Analysis variables (independent)

Topographic Elevation continuous ASTER GDEM

Table 3: Variables used for KDE analysis in the Hadzici study area.

Variable Type Source

Response (dependent)
Incidents and mine field points points BHMAC

Mine field polygons and hazard areas polygons BHMAC

Predictor (independent)
Distance to cultivated areas categorical CLC EEA-based

Buildings points BHMAC

Craters and holes point SAFEDEM-DEMO

Table 4: Variables used for Disaster Risk analysis in the Dolac study area.

Variable Type Source

Response (dependent)
Incidents and mine field points points BHMAC

Mine field polygons and hazard areas polygons BHMAC

Landmines and ERW risk indicators Building 
ruins and other indicators points SAFEDEM-SADA

Predictor (independent)
Distance to built-up areas categorical CLC EEA-based

Buildings points SAFEDEM-SADA

Centroids of areas showing vegetation gain points SAFEDEM-SADA

Table 5: Variables used for Disaster Risk analysis in the Hadzici study area.

Conclusions
This paper uses geo-spatial analysis to provide insight into potential 

landmine and Explosive Remnants of War (ERW) risk areas based on 

a set of environmental features. The study demonstrates that adaptive-
bandwidth Kernel Density Estimation (KDE) can be used not only as 
a landmine and ERW contamination measure, but also as the basis for 
disaster risk analysis, as commonly defined, namely a combination of 
hazard, vulnerability and element at risk components. To extend the 
use of KDE to polygon-shaped data, we propose a new infilling method 
for polygons. This approach proves convenient for landmine and ERW 
contamination evaluation.

Our risk analysis approach is mainly based on an original variant 
of the use of the KDE method. Indeed, the hazard component identifies 
areas where landmine and ERW hazards are likely to occur, according 
to an adaptive-bandwidth KDE map. The dual KDE is used to estimate 
the vulnerability component of the risk. Additionally, the chosen 
element-at-risk component is weighted according to the three-top 
natural-breaks based classification of the KDE map.

Our method is tested on two different study areas in BIH. It enabled 
the discovery of zones where the chosen element at risk is more affected. 
On the Dolac study area, the final risk map helps to prioritize the 
land release activities in high risk areas affecting access to agriculture 
zones, already designated as risky by the Bosnia and Herzegovina 
Mine Action Centre (BHMAC). The results on the Hadzici study 
area are validated by a good match against the overlaying risk regions 
designated as confirmed and suspected by BHMAC. They highlight 
population blocking in built-up zones and roads on specific places. It 
also draws attention to the potential danger on some few unexplored 
areas depicted as being under medium risk. Thus, the method proposed 
in this feasibility study can be used as a strategy in humanitarian mine 
action reducing time and cost of choosing priority areas for land release.
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