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Introduction
Sepsis is a leading cause of critical illness and death worldwide. The

most recent consensus statement defines this complex clinical
syndrome as “life-threatening organ dysfunction caused by a
dysregulated host response to infection” [1]. Despite clinical studies
that have led to improved quality of care in the management of sepsis,
mortality remains high [2]. An unmet need in the field is the
development of pharmacologic interventions that target aberrant
pathways that cause tissue injury in sepsis. Glycogen synthase
kinase-3β (GSK3β), while initially identified in studies of glucose
metabolism, has critical roles in apoptosis, cell proliferation, and
inflammation (Figure 1). Over the past decade, studies have shown
many inflammatory pathways to converge on GSK3β. In experimental
models of sepsis, inhibition of GSK3β kinase activity decreases severity
of organ dysfunction and reduces mortality. These studies suggest that
GSK3β is a promising therapeutic target in the treatment of sepsis.

Figure 1: GSK3β modulates multiple biological functions.

GSK3β as a Central Kinase in Inflammation
GSK3β is a serine-threonine kinase that was first characterized in

glucose metabolism [3]. It shares 85% homology with GSK3α, but the
C-terminal 76 residues only share 36% identity [4]. Both GSK3α and
GSK3β have high basal constitutive activity, but they have divergent
functions beyond metabolic pathways [5]. Phosphorylation of Ser9 by
upstream kinases such as PI3K-Akt inhibits GSK3β kinase activity
(Ser21 on GSK3α), while phosphorylation of Tyr216 (Tyr279 in
GSK3α) increases activity (Figure 2) [6,7]. Homozygous GSK3β -/-
mouse embryos die from massive hepatocyte apoptosis and liver
degeneration [8]. This phenotype is not rescued by expression of
GSK3α. Fibroblasts from GSK3β -/- were more sensitive to TNFα-
induced apoptosis, and this effect was reversed with neutralizing TNFα
antibodies or exogenous expression of GSK3β. Later studies showed
parallels between the GSK3β -/- and RelA -/- phenotypes, raising more
questions about the role of GSK3β in the regulation of NFκB pathways.

GSK3β is required for efficient DNA binding of p65 and expression of
IL-6 and MCP-1 in response to TNFα [9]. In contrast, a study by Vines
et al. demonstrated that GSK3β had anti-inflammatory effects
downstream from NFκB activation in human lung micro vascular
endothelial cells after treatment with IL-1β and TNFα [10]. Beurel and
Jope showed that STAT3 and STAT5 activation depend on GSK3β
kinase activity, but STAT1 and STAT6 activation was not dependent on
GSK3β [11]. Evidence suggests that GSK3β serves as a gatekeeper for
NFκB activation, modulating expression of pro- and anti-
inflammatory genes in a cell type and stimuli-dependent manner.

Figure 2: GSK3β activity is regulated by its phosphorylation state.

GSK3β Regulates Toll-Like Receptor Pathway
Activation

In sepsis, pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs) propagate
inflammation and tissue injury. These effects are mediated through
pattern recognition receptors (PRRs) including toll-like receptors
(TLRs). Martin et al. published the first study confirming a central role
for GSK3β in TLR signaling [12]. LPS induces PI3K/Akt-mediated
Ser9 phosphorylation and inhibition of GSK3β, allowing for
augmentation of anti-inflammatory cytokines in human peripheral
blood monocytes (PBMCs). Treatment with a GSK3β-specific inhibitor
protected mice from endotoxin-induced sepsis and death. GSK3β
inhibition in human PBMCs also reduced cytokine production in
response to TLR2, TLR4, TLR5, and TLR9 ligands. Subsequent work
identified mTORC1 as a negative regulator of GSK3β kinase activity
through S6K, and this inhibition decreases LPS-induced
proinflammatory cytokine production [13]. The field has since grown
in the number of studies exploring how GSK3β regulates downstream
signaling after TLR ligand binding. It has been found to be important
in TLR3 signaling through its own K63-linked polyubiquitination and
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subsequent phosphorylation of TRAF6, allowing assembly of the TRIF
complex that is required for TLR3 signaling [14]. In a mouse model
infected with a live vaccine strain of Francisella tularensis, inhibitory
Ser9 phosphorylation of GSK3β occurred in a TLR2-dependent
manner in murine macrophages. GSK3β positively regulated NFκB
and p65 DNA binding affinity while negatively regulating CREB DNA
binding [15]. These effects were reversed by lithium treatment, a
known inhibitor of GSK3β [6,16]. These early studies demonstrate a
pivotal role of GSK3β in innate immune responses that contribute to
the pathogenesis of sepsis [17].

GSK3β Inhibition is an Attractive Therapeutic Target in
Sepsis

While GSK3β has been identified as a central kinase in
inflammation, translational studies have emerged demonstrating
benefits of GSK3β inhibition in animal models of sepsis and organ
failure. In a rat model of sepsis, use of selective GSK3β inhibitors
reduced LPS-induced liver injury and failure [18]. GSK3β inhibitors
decreased severity of illness and improved survival in experimental
models of acute lung injury [19,20]. GSK3β kinase activity has also
been implicated in organ damage from liver ischemia, often a result of
hypoperfusion as seen in septic shock [21,22]. In acute kidney injury
(AKI), GSK3β induces apoptosis of renal epithelial cells after ischemic
injury and stress [23]. Deletion of GSK3β expression or small molecule
inhibition of GSK3β protects mice from AKI both in ischemia-
reperfusion models and models of sepsis [24-26]. This data support a
role for GSK3β in potentiating end organ damage in sepsis and is an
attractive therapeutic target in both prevention of and treatment for
organ dysfunction and failure.

Conclusion
GSK3β has become a focal point in research given its multifaceted

role in inflammation. More studies are needed to understand how
GSK3β activity is dysregulated in the pathogenesis of sepsis and in host
immune responses to pathogens. The goal is to tailor therapies for
GSK3β-mediated pathways that contribute to uncontrolled
inflammation that accelerates organ dysfunction and failure in sepsis.
It remains to be seen if the studies of small molecule inhibitors of
GSK3β that have produced striking data in animal models can be
translated to treating patients with this devastating illness.
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