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ABSTRACT
The importance of global group B streptococcal (GBS) colonization during pregnancy is briefly reviewed in this 
short article. About 20% all pregnant women worldwide are colonized with this organism necessitating the use of 
intrapartum antibiotic prophylaxis (IAP) in order to prevent neonatal GBS disease. In some geographic regions rates 
of colonization are as high as 35%. Such a high rate of IAP is shown to be concerning because of childhood adverse 
effects. We briefly summarize 5 main childhood adverse outcomes from IAP which include antibiotic resistance, 
the development of various atopic diseases, dysbyosis, obesity, and impaired immune function. Finally, the article 
clearly lists 4 reasons why a GBS vaccine is specifically urgently needed in order to curb the often unnecessary if not 
dangerous use of IAP to prevent against the onset of neonatal GBS disease.  It is hoped that such a vaccine could 
reduce the rate of IAP from a high of 40% to a low of 10%.
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INTRODUCTION

As a general academic pediatrician of more than 3 decades, I, like 
many other pediatricians, over the years, have been increasingly 
concerned about the use of antibiotics in order to prevent neonatal 
sepsis especially from maternal Group B Streptococcal (GBS) 
colonization. I recently asked a group of residents and medical 
student in my service in the newborn nursery in a large tertiary 
care hospital: “what is the rate of GBS colonization among women 
delivering in our hospital and throughout the nation?” The 
residents and students could not give a cogent answer even though 
the literature is quite clear on the global colonization rates of GBS 
during pregnancy. 

More than a third of all pregnant women may be colonized with GBS 
[1]. Since the 2002 recommendation by the CDC that all pregnant 
mothers receive Intrapartum Antibiotic Prophylaxis (IAP) prior to 
delivery [2]. Followed in 2011 by modified recommendations from 
the American Academy of Pediatrics and the American College of 
Obstetricians and Gynecology [3,4] there has been a dramatic drop 
of at least 80% in the incidence of early onset GBS (EOGBS) sepsis 
[2]. It is easy therefore to conclude that IAP is a resounding success 
in reducing neonatal GBS disease but at what price?

This article will summarize the global prevalence of GBS colonization 
including factors associated with increased colonization rates as 
gleaned from the literature. We will also outline [5] important 
known complications associated with the potential high rate of 
IAP use: 1) antibiotic resistance, 2) dysbiosis, 3) atopic diseases, 4) 
obesity, and 5) immune function. Finally, the article will highlight 
some of the important reasons why a GBS vaccine is urgently 

needed in order to curb the use of IAP to prevent neonatal GBS 
disease.

GLOBAL PREVALENCE OF GBS 
COLONIZATION AMONG PREGNANT WOMEN

The prevalence of GBS colonization throughout the world has 
been well studied [5-10]. The US, Europe, Australia and African 
countries south of the Sahara have the highest rates [11-13]. The 
lowest rates have been noted in some East Asian/Pacific Island 
nations [14-16]. Overall the rates of GBS colonization of 20%-30% 
have remained remarkably stable over the past several decades. 
Globally therefore, over a third of our term or near term neonates 
are potentially exposed to antibiotics in utero. 

FACTORS ASSOCIATED WITH GBS 
COLONIZATION DURING PREGNANCY

It would seem that the group B streptococcus (GBS) is a normal 
commensal that inhabits the gastrointestinal and genitourinary 
tracts. Under certain conditions it may suddenly begin to multiply 
and become pathogenic [16-18]. Factors associated with GBS 
increased colonization during pregnancy have been previously 
explored. It is possible that the inappropriate use of systemic 
antibiotics may modify the gut and genital microbiome resulting 
in increased colonization with pathogenic bacterial including GBS 
[19]. In the USA and some European countries black women 
have been reported to have higher colonization than their non-
white counterparts [6,16-18]. Other factors associated with GBS 
colonization are substance use [20]. Diabetes mellitus, obesity 
and frequency of sexual contact [21-23]. Finally, two studies so far 
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clearly show that young mothers less than 20 years have higher 
colonization rates than their older counterparts [6,16]. One recent 
study showed that tobacco smoking during pregnancy increased 
GBS colonization by a factor of 2 even after controlling for various 
potential confounders [6]. Interestingly, this inverse relationship 
between tobacco smoking and GBS was only noted among the non-
smokers. The mechanism whereby tobacco smoke could lead to 
increased colonization of pathogenic organism in the respiratory, 
GI and genitourinary tracts is not quite clear. 

Again as stated above, it would seem that GBS is simply part of 
the stable microbiome of everybody [19]. Numerous studies show 
that the development of the microbiome is influenced by factors 
such as type of delivery (vaginal vs. c/section), type of feeding 
(formula vs. breastfeeding), type of adult diet (vegetarian vs. other) 
and antibiotic use during the prenatal and neonatal periods 
[24,25]. What is not quite clear is how this microbiome changes 
from birth to adulthood. It is also possible, indeed probable, 
that this microbiome development can be disrupted by certain 
environmental factors leading to either an increase or a decrease 
in pathologic microorganisms already colonizing the body. Thus 
it is necessary to understand what factors disrupt the microbiome 
during pregnancy leading to increased GBS colonization resulting 
in neonatal GBS disease. 

DANGERS OF IAP

Development of resistance

In some countries including the United States, more than 
one third of all term or near term neonates have mothers with 
documented exposure to intrapartum antibiotics [26,27]. However, 
IAP has been associated with the development of resistance. The 
spread of antibiotic resistance is in part due to the overuse and 
misuse of antibiotics for the prevention and/or treatment of 
various infections in the neonate, especially GBS. Little is written 
on antibiotic stewardship in perinatal care. Ledger et al [28]. 
Recently suggested that we are using too many antibiotics during 
pregnancy. He opined that up to 40% of all pregnant women in the 
United States use antibiotics during pregnancy to prevent or treat 
infections in both mother and the fetus. 

In preterm neonates intrapartum antibiotics can result in 
preventing or reducing neonatal infections and chorioamnionitis 
[29-31], but can also result in adverse outcomes such as Necrotizing 
Entero Colitis (NEC) [32,33]. The most worrisome outcome is, 
of course, drug resistance. Among infants without culture-proven 
sepsis or without NEC, higher antibiotic utilization rates were 
associated with adverse neonatal outcomes such as increased rates 
of retinitis of prematurity, various neurodevelopmental disorders, 
and mortality [32,33].

Dysbiosis in children

The early use of antibiotics has been shown in numerous studies 
to result in gut dysbiosis. Gut dysbiosis is defined as an imbalance 
of gut microflora or microbiota. Stated simplistically, gut dysbiosis 
occurs when the commensals (good bacteria) are decreased and 
the pathogens (bad bacteria) increase than is normally the case. 
Gut dysbiosis often manifests as gassiness, colicky abdominal pain, 
bloating, diarrhea and /or constipation, food intolerance or food 
sensitivity. Increased use of IAP is now known to result in the 
increasing occurrence of gut dysbiosis in the pediatric population 
[34-37]. Thus we can conclude that since the perinatal use of 
antibiotics in infants is over 40% [28]. This must surely contribute 

to gut dysbiosis.

Atopic diseases

Atopic illnesses such as Atopic Dermatitis (AD), asthma, and 
Allergic Rhinitis (AR) are diseases that are now being increasingly 
linked to overuse or inappropriate use of antibiotics. Asthma has 
been linked to antibiotic use to treat infections during the perinatal 
period [38-41]. In the late eighties Strachan opined that repeated 
infections (both respiratory and bacterial) decrease the likelihood 
of allergic diseases [42]. Thus was born the hygiene hypothesis. It 
has subsequently been shown that frequent infection results in 
stimulation of the T1 helper (TH1) cells and less of the TH2 (T2 
helper) cells [43]. In a too clean environment, there are very few 
infections so the TH2 cells are preferentially stimulated and the 
body’s immune defenses are skewed toward developing allergic 
diseases. 

It is likely that early antibiotic use may not only destroy pathogenic 
bacteria but may also destroy useful commensal phyla such as the 
Bacteriodetes and the Firmicutes which are mainly responsible 
for producing the body’s short chain fatty acids (SCFAs). SCFAs 
are very important in regulating the body’s immune system and 
may actually directly or indirectly modulate the differentiation 
or proliferation of T cells [41]. It is therefore logical to conclude 
that because antibiotics can destroy these important commensals, 
there could be decreased production of these important immune 
modulators. 

Obesity

The association between antibiotic exposure and growth first 
emerged from animal studies several decades ago when farmers 
noted that small doses of antibiotics made their animals grow 
bigger and faster [44,45]. Emerging data now show that early 
antibiotic use may also be linked to obesity. In studies in which 
children received intrapartum antibiotics in the 2nd or 3rd trimester 
of pregnancy, they were more likely to be obese at 7 years than their 
untreated counterparts [46,47]. 

Exposure to antibiotics any time after delivery has also been 
demonstrated to predict obesity later in life. Thus antibiotic use 
during the first 6 months of life was associated with increased BMI 
[48]. The type of antibiotic exposure is also important with broad 
spectrum antibiotics use causing higher obesity rates than narrow-
spectrum ones [49]. Antibiotics used for treating pathogenic 
bacteria inadvertently may also destroy useful commensals such as 
the Firmicutes and Bacteriodetes species. The destruction of these 
important commensals causes a shift or change in the gut microbiota 
resulting in decreased production of SCFAs subsequently results in 
increased glucose utilization [50].

Immune function

It is now well documented that SCFAs (mainly acetate, butyrate, 
and propionate), produced from fermentation of dietary fibers 
by the Bacteriodes and Firmicutes, are actively involved in both 
the innate and cellular immune response. Thus SCFAs enhance 
the epithelial barrier of the gut through induction of genes 
encoding tight-junctions components [51-53]. SCFAs, through a 
complex mechanism, exert their activity directly or indirectly on 
antigen-presenting cells, epithelial cells, and T cells to influence 
inflammatory response to various infections [41,54,55]. Therefore, 
antibiotic-treated subjects would partly eliminate the Firmuctes 
and Bacteriodes thus reducing their ability to produce SCFAs with 
the resultant impairment of the overall immune function. 
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WHY GBS VACCINE IN URGENTLY NEEDED

GBS vaccine is urgently needed for at least 4 reasons:

1) The unchanging high prevalence of GBS colonization among 
pregnant women: The prevalence of GBS colonization is high and 
does not seem to have changed over the past several decades. Studies 
show that GBS colonization occurs in about 20%-30% of women 
of term or near term newborns in the United States [5-9]. In most 
other countries of the world [1,9-12]. Thus a high proportion of 
IAP antibiotics will always be needed to curb neonatal GBS disease. 

2) Lack of screening of most pregnant women: Universal screening 
of all pregnant women prior to delivery is highly desirable so that 
they can be appropriately treated prior to delivery. However, this 
is practically impossible for various reasons including preterm 
delivery. Indeed only 50% of preterm neonates are screened 
for GBS colonization prior to delivery [56]. Furthermore, 20% 
of EOGBS disease and almost 50% of LOD occur in preterm 
neonates less than 35 weeks [57]. 

3) The transient nature of GBS colonization throughout 
pregnancy: It has been shown that at most 40% of women initially 
+ve for GBS are still +ve at delivery [58]. Thus a high proportion 
of women may be receiving unnecessary IAP and women who may 
have benefitted from IAP may not be treated because they initially 
screened negative. 

4) The unchanging prevalence of late onset GBS disease: Recent 
studies show that while early onset GBS disease in neonates has 
dramatically declined by almost 40%, the late onset disease has 
remained surprisingly stable in the era of intrapartum antibiotics 
[57]. 

It is therefore hoped that an effective vaccine would reduce the use 
of intrapartum antibiotics from a current high rate of about 40%+ 
to less than 10% of all births 

CONCLUSION

Despite the advancement in the diagnosis, prevention, and 
treatment of GBS disease, this pathogen continues to cause 
significant disease in young infants and children globally. Thus 
a GBS vaccine is urgently needed and would greatly reduce the 
unnecessary use of intrapartum antibiotics thus avoiding many of 
the complications enumerated above. 
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