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Introduction
Hepatocellular Carcinoma (HCC) is a most aggressive and 

devastating cancer, the third leading cause of cancer-related mortality 
worldwide, with 0.6 million new cases annually [1,2]. In developing 
countries, HCC accounts for 84% of the total world incidence and 
83% of the total world death rate [3]. The rate of HCC incidence is 
increasing, partly due to the maturation of persons infected with the 
hepatitis C and B viruses, but also changes in lifestyle that lead to 
chronic alcohol abuse [4], non-alcoholic steatohepatitis, diabetes, and 
obesity [5,6]. Furthermore, more than 60% of patients have advanced 
stage disease, with metastasis, at the time of diagnosis [7], resulting in 
a very low overall 5-year survival rate (<16%) [8]. This is in contrast to 
the high 5-year survival rate (>93% with surgical intervention) when 
diagnosis is at early-stage, such as Barcelona Clinic Liver Cancer stage 
0 and A [9]. 

Current methods to diagnose HCC include ultrasonography, 
computed tomography (CT), magnetic resonance imaging, and biopsy. 
While highly accurate, the biopsy procedure is painful. Diagnosis 
achieved through ultrasonography can be objective, as it depends on the 
size and character of the focal liver changes, but accuracy is also related 
to the experience of the operator and the quality of the equipment [10]. 
Focal liver lesions suspected on ultrasonography should be further 
confirmed with CT, magnetic resonance imaging, or both. Together, 
these methods can achieve a diagnosis of HCC with sensitivity and 
specificity of 89% and 99%, respectively [11]. Unfortunately, biopsy 
and imaging methods only detect disease that is already advanced, 
when nodes are obvious, and this means little to curative treatment. 
What is needed are non-invasive effective biomarkers to diagnosis 
HCC at the early stage. 

The most widely used biomarker currently used in HCC is the 
protein alpha-fetoprotein (AFP) in blood. However, while elevated 
levels may indicate a potential liver disease or cancer, screening tests 
have such low sensitivity (at best, 60%) and specificity (being confused 
with intrahepatic cholangiocarcinomas or colon cancer metastases) 
that they cannot be relied upon for diagnosis of HCC, even in high-
risk groups. At best, AFP may only indicate response to treatment. 
Therefore, AFP is not recommended in the current guidelines of the 
American Association for the Study of Liver Diseases [12]. 

Research efforts in finding suitable biomarkers for early diagnosis 
of HCC has turned toward the complex interactions of biological 
molecules, aided by increasingly refined maps of networks such 
as protein-protein interactions and signal pathways. In particular, 
approaches based on high-throughput proteomics offer a versatile 
platform to assay the disturbance of global proteins. Through associated 
differentiations, we may be able to find dysfunctional compounds 
that could lead to the discovery of biomarkers useful for the early 
diagnosis of HCC, as well as gain insight into the mechanisms driving 
oncogenesis. In the present review, we describe current strategies in 
proteomics for discovering useful biomarkers.

Development of proteomics toward HCC 

In the mid-1970s, the development of analysis technology such 
as mass spectrometry (MS) and high-resolution two-dimensional gel 
electrophoresis (2DE) [13-15] enabled the study of proteins on a mass 
scale, the study now known as proteomics. Subsequent research focused 
on automated procedures that let biologists focus on data analysis. 
These efforts, primarily driven by work at the Argonne National 
Laboratory (United States), culminated in 1980 with establishment of 
the Human Protein Index Task Force. The purpose of the task force 
was to create the Human Protein Index (HPI) database, to catalog all 
the proteins in every human cell type.

The HPI project at first failed to attract large-scale support. This 
was partly because automated science was considered inappropriate in 
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biology, and also because the possibility of sequencing entire genomes 
was not yet recognized. In 1996, Wilkins et al. [16] were the first to 
publish the concept of the proteome, defined as all the proteins produced 
through the genome. In the same year, the Australian government 
funded the Australian Proteome Analysis Facility, equipped with state-
of-the-art technology dedicated to proteomic research [17].

In 1998, Chinese scientists began studying the proteome of 
the liver, and in March 2002, the Asian and Oceanian Human 
Proteome Organization launched the Human Liver Proteome Project 
(HLPP). Since 2006, the stated objectives of the HLPP have been the 
identification, characterization, and integration of the human liver 
proteome. Accomplishing these objectives entails creating expression 
and modification profiles, and maps of protein-protein interactions 
and proteome localization. In addition, the HLPP seeks to define the 
ORFeome (protein-encoding open reading frames), physiome (normal 
physiological dynamics), and pathome (differentially expressed 
pathways in pathogenesis) of the liver [18].

Completion of the Human Genome Project in April 2003 made 
reasonable the goal of creating a map of the entire human proteome 
map with all its networks of interactions, and interest in finding a 
biomarker of HCC intensified. Currently, the HLPP summarizes its 
mission focus as understanding the molecular mechanisms underlying 
liver function and disease. Proteomic research in HCC has included the 
search for suitable biomarkers, with some success achieved.

General aspects of HCC proteomic research

Proteomics is the large-scale study of proteins, especially their 
structure and function. In particular, proteomic research seeks 
to characterize biological processes, including disease and drug 
effects, by understanding the regulation and quantification of gene 
expression [19]. Thus, proteomic research can contribute greatly to our 
understanding of pathogenesis, as disease dysfunction is reflected in 
the differentiable genetic expression of proteins. Identifying aberrant 
proteins in fluids or HCC cells with high throughput proteomics is a 
powerful approach to search for HCC biomarkers. In this review we 
illustrate the ability of the proteomic platform to find HCC biomarkers, 

by concentrating on 25 proteins, each of which is involved in various 
functions such as apoptosis, ion transport, differentiation, and death.

The typical experimental workflow of a proteomic experiment 
in HCC is depicted in Figure 1. The first step is protein preparation, 
in which proteins are isolated from tissue or blood samples by 
protein labeling, laser capture microdissection (LCM), or subcellular 
fractionation, depending on the scientific question. The result is 
a mixture protein, and an additional fractionation step (protein 
separation) is required. 

The method of protein separation depends on the goal of the 
research (Figure 1). For differences in protein ligand specificity, affinity 
chromatography is appropriate. To separate according to differences 
in molecular weight, dialysis and ultrafiltration, or gel filtration 
chromatography (GFC) may be chosen. Charged proteins may be 
resolved by electrophoresis, or ion exchange chromatography (IEC). 
To separate by solubility, techniques include salting out, isoelectric 
point precipitation (IPP), and organic solvent precipitation (OSP). 

Subsequently, to identify proteins, we can combine a variety 
of methods such as image analysis, microsequencing, MS with 
peptide mass fingerprinting (PMF) of peptide fragments, or amino 
acid composition analysis (Figure 1). After identification, potential 
biomarkers are finally determined through protein informatics, by 
database matching or protein-protein interaction (PPI) mapping. 
Proteome informatics provides a way to understand the underlying 
pathways and the interactions between individual signature markers 
and non-markers. With further analysis of this information, we may 
obtain potential biomarkers for early diagnosis of HCC.

Quantification strategies in HCC research

In addition to identifying as many proteins as possible in a given 
sample, in proteomic research the quantification of these biomolecules 
is crucial to finding HCC biomarkers (Figure 2) [20]. Several 
methodologies have been developed to monitor quantitatively relative 
or absolute changes in protein levels.

MS-based proteomics quantitative analysis: MS can provide 

Figure 1: Workflow of proteomics research investigating biomarkers in HCC.
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important insights into the molecular mechanisms of particular 
diseases by allowing comparison of the types and amounts of proteins 
between diseased and normal cells and tissues. Furthermore, proteomic 
analysis via MS technologies and MS-based quantitative strategies 
can provide a more global and accurate view of dynamic biological 
processes. Normally, this method can be divided into two broad 
categories: Labeling quantitation (in vivo labeling or in vitro labeling) 
or label-free quantitation. 

Because of its simplicity, affordability, and accuracy, the most 
popular technique used in the lab for in vivo labeling quantitation is 
stable isotope labeling with amino acids in cell culture (SILAC) [21]. 
Chen et al. [22] utilized SILAC to study HCC metastasis mechanisms 
and potential predictive biomarkers of HCC metastasis. As SILAC 
cannot quantitatively analyze samples that cannot be cultured, 
Ishihama et al. [23] invented an alternative approach, based on SILAC, 
known as culture-derived isotope tags (CDITs). CDITs are now more 
commonly applied than SILAC in the search for HCC biomarkers. For 
example, Li et al. combined CDITs with 2D liquid chromatography-
tandem MS (2D-LC-MS/MS) and concluded that APEX1 (apurinic/
apyrimidinic endodeoxyribonuclease 1) and ANP32A (acidic [leucine-
rich] nuclear phosphoprotein 32 kDa family member A) have potential 
as biomarkers of HCC [24]. 

According to labeling different parts of proteins, the current lab 
usually use techniques include isotope-coded affinity tag (ICAT). Kang 
et al. [25], used cleavable stable isotope labeling (cICAT) combined 
with LC-electrospray ionization tandem mass spectrometry (LC-
ESI-MS/MS) to compare the serum proteome between liver cirrhosis 
and HCC patients. They reported that alpha-2-macroglobulin was 
downregulated and AGP (alpha-1-acid glycoprotein) was upregulated 
in serum. The results of this study showed the power of this method to 
find potential HCC biomarkers. 

Although widely used, the prototypical ICAT technique has a 
number of limitations. These include missed identification of proteins 
with few or no cysteine residues, lost information for post-translational 
modifications, differential reversed-phase elution of identical peptides 
labeled with hydrogen/deuterium isotope pairs, and the complicated 
interpretation of tandem MS due to addition of the biotin group 
[26,27]. To a certain extent, isobaric tags for relative and absolute 
quantitation (iTRAQ) solve this problem [28]. The work of Zhou et al. 

[29] verified the iTRAQ method for investigation of HCC biomarkers, 
by finding that HSP90A (heat shock protein 90) levels were elevated in 
HCC cells, serum, and tissues.

Although SILAC is the most reliable method for quantitative MS, 
the preparation of isotope-labeled compounds is time-consuming and 
expensive. In recent years, label-free quantitative technology based on 
liquid chromatography tandem MS (i.e., label-free LC MS/MS) and 
has been recognized as a viable alternative. Reis et al. [30] utilized LC 
MS/MS to find that elevated levels of 14-3-3 sigma were diagnostically 
accurate for HCC in hepatocytes, with rates of 73.2%, and 72.7% for 
specificity and sensitivity, respectively. Naboulsi et al. [31] applied the 
label-free platform to find that Versican was significantly associated 
with well differentiated and early-stage HCC; the area under the 
receiver operating characteristic curve (AUROC) was 0.85. However, 
label-free quantitative techniques are still in infancy, and there are no 
consistent international standards. 

Full utilization of MS has provided us with many potential 
biomarkers for diagnosing HCC (Table 1). For example, a1AT, 
B2M, ERBB3, Fu-HPX, Prx-II, CC3-a, PHB2, G2890, G3560, and 
vimentin are upregulated in blood or tissues [32-40], and AFM, and 
CLU are downregulated in the plasma of HCC patients [41,42]. These 
biomarkers also indicate novel molecular mechanisms that may be 
targeted for treatment.

Protein quantification based on two-dimensional gel 
electrophoresis and staining: Two-dimensional gel electrophoresis 
(2DE) is a powerful method for protein abundance studies, and 
the only one available for simultaneous resolution of thousands of 
proteins. O’Farrell [14] first described the technique in 1975. In 2DE, 
proteins are separated according to their charge by isoelectric focusing 
or immobilized pH gradient (in the first dimension), and then by size 
via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE; the second dimension). Sun et al. [43] utilized 2DE to find that 
APO A1 was downregulated in HCC patients’ sera and the fold change 
was 3.59 compared with normal healthy controls. Other researchers 
have concluded that AACT, GFAP, hCE1, LMNB1, ConA-pCD, 
HSP90, OPN, and Hs-AFP-L3 are upregulated in HCC patients [43-
50], indicating their potential power for diagnosis. 

Despite being well-established as a technique for protein analysis, 

Figure 2: Common quantitative strategies applied in HCC proteomic research.
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traditional 2DE is time-consuming and labor-intensive [51]. Two-
dimensional fluorescence difference gel electrophoresis (2D-DIGE), 
which is based on traditional 2DE, overcomes these shortcomings well. 
The 2D-DIGE technique was first described by Jon Minden’s laboratory 
[52] and has subsequently been refined and marketed by Amersham 
Biosciences (GE Healthcare). Megger et al. [53] used 2D-DIGE to 
search for an HCC biomarker in HCC liver tissue, and concluded 
that betaine-homocysteine methyltransferase (BHMT) is upregulated 
relative to non-tumorous liver tissue. 

Quantitative measurement of differential protein levels, 
solely using MS, is not fully reliable due to the uneven ionization 
efficiency of peptides with different sequences-the signal intensity of 
various peptides in mass spectra is not usually proportional to their 
abundance. Therefore, 2DE is used commonly in conjunction with 
MS to measure relative differences in individual proteins, determined 
from the intensities of stained protein spots gained through image 
analysis [54]. The coupling of gel-based classic proteomic approaches 
with MS has enabled researcher’s greater detail and flexibility in the 

analysis of the human proteome and finding HCC biomarkers [12]. In 
Table 2, we summarize studies that use mixed methods. These studies 
show that associations between certain proteins and HCC disease 
etiology or progression can be demonstrated with high sensitivity and 
specificity, and that these proteins are potential HCC biomarkers. The 
heterogeneous nature of these studies notwithstanding, their relevance 
to the search for HCC biomarkers cannot be questioned. 

Due to the complexities of HCC etiology [55] and differences in 
clinical behaviors, no single protein is likely to have sufficient sensitivity 
and specificity for the detection of HCC, Particularly early HCC [10]. 
Rather, potential biomarkers may be considered in combination, 
to improve their efficiency. In Table 3, we summarize the recent 
research regarding biomarker combinations in HCC, with specificities 
and sensitivities, as a useful guide for present research. Among the 
biomarkers listed, combinations with AFP or AFP-L3 are particularly 
important in the diagnosis of HCC [56-58]. For example, Choi et al. 
[56] found that AFP-L3 combined with PIVKA-II had a sensitivity and 
specificity of 94.4% and 75.6%, respectively. Sun et al. [40] concluded 

Protein Uniprot* Sample Cf. HCC FC AUROC Spec Sens Platform First Author, Year
a1AT P01009 Plasma ↑ - 0.84 - - QTOF–LC–MS, ELISA Fye, 2013
A2M P01023 Plasma ↓ 0.26 - - - ICAT–LC–ESI–MS/MS Kang, 2010
AFM P43652 Plasma ↓ - 0.72 - - nUPLC–ESI–QTOF–MS & TQMS Lee, 2011
B2M P61769 Plasma ↑ - - - - SELDI–TOF–MS Nakatsura, 2010
CLU P10909 Pl/ser ↓ - - - - SID–MRM–MS Zhao, 2010

ERBB3 P21860 Serum ↑ - 0.93/0.71 97% 71% MALDI–TOF–MS, WB, ELISA Hsieh, 2011
Fu-HPX P02790 Plasma ↑ 1.40 0.95 92% 92% Lectin LC–MS/MS Comunale, 2009

Prx-II P32119 Plasma ↑ - 1.00 - - MALDI–TOF–MS Lu, 2010
CC3-a P01024 Serum ↑ - 0.70 72-98% 41-77% SELDI–TOF–MS Kanmura, 2010
PHB2 Q99623 Tissue ↑ - - - - Label-free UPLC-ESI-Q-TOF-MS/MS Cheng, 2013

Vimentin P08670 Serum ↑ - 0.69 88% 41% MALDI-TOF/TOF-MS Sun, 2010
Versican P13611 Tissues ↑ - 0.85 - - Label-free LC-M/MS Naboulsi, 2016
G2890 - Serum ↑ - 0.91 92% 83% MALDI-TOF-MS Kamiyama, 2013
G3560 - Serum ↑ - 0.85 89 % 71% MALDI-TOF-MS Kamiyama, 2013

*UniProt, Universal Protein Resource
Cf: Compared with/Relative to; ELISA: Enzyme-linked Immunosorbent Assay; ESI: Electrospray Ionization; FC: Fold Change; ICAT: Isotope-coded Affinity Tag; LC: Liquid 
Chromatography; MALDI: Matrix-assisted Laser Desorption/Ionization; MRM: Multiple Reaction Monitoring; NUPLC: Nano Ultra-performance Liquid Chromatography; 
Pl: Plasma; QTOF: Quadrupole-time-of-flight; Ser: Serum; SELDI: Surface-enhanced Laser Desorption/Ionization; Sens: Sensitivity; SID: Stable Isotope Dilution; Spec: 
Specificity; TOF: Time-of-flight; TQMS: Triple Quadrupole Mass Spectrometer; UPLC: Ultra-performance Liquid Chromatography

Table 1: Summary of proteomic studies investigating single biomarkers via MS in recent years.

Protein Uniprot* Sample Cf. HCC FC AUROC Spec Sens Platform First Author, Year
AACT P01011 Plasma ↑ 5.30 - - - 2D-LC–MALDI– TOF/TOF Ishihara, 2011

Apo A1 P02647 Serum ↓ 3.59 - - - 2DE-coupled MALDI–TOF–MS Sun, 2010b
GFAP P14136 Serum ↑ - - - - 2DE-coupled, MALDI–TOF, WB Wu, 2012
BHMT Q93088 - ↑ - - - - 2D-DIGE-LC-MS Megger, 2013
OPN P10451 Plasma ↑ - 0.76 62% 75% LC–ESI–MS/MS with 2D Shang, 2012
hCE1 P23141 Plasma ↑ - 0.80 85% 70% 2DE-MALDI–TOF/TOF-MS Na, 2009

14-3-3 sigma P31947 Tissues ↑ 58.80 - 73% 73% label-free gel-based proteomics LC-MS/
MS Reis, 2015

LMNB1 P20700 Plasma ↑ - - 76% 82% 2DE-MALDI-TOF Sun, 2010
ConA-pCD Serum ↑ - 0.88 80% 85% 2DE-MS Qi, 2014

HSP90 P07900 Serum ↑ 7.04 - - - 2DE-MS-MALDI-TOF Sun, 2010
AGP1 P02763 Serum ↑ - 0.83 90% - ICAT-LC-MS/MS Kang, 2010

HSP90A P07900 Serum ↑ 30.48 - - - ELISA-Itraq labeled & LC separation Zhou, 2015
Hs-AFP-L3 - Serum ↑ - - 51% 50% - Kumada, 2014

*UniProt, Universal Protein Resource
CF: Compared with/Relative to; ELISA: Enzyme-linked Immunosorbent Assay; ESI: Electrospray Ionization; FC; Fold Change; ICAT: Isotope-coded Affinity Tag; LC: Liquid 
Chromatography; MALDI: Matrix-assisted Laser Desorption/Ionization; Sens: Sensitivity; Spec: Specificity; TOF: Time-of-flight

Table 2: Summary of proteomic studies investigating single biomarkers that combine 2DE and MS in recent years.
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that the specificity of vimentin combined with AFP reached 98.2%. 
Kang et al. [25] showed an AUROC of 0.88 for the combination of AGP 
and AFP. 

Other potential biomarkers have also shown impressive results. 
For example, Ahn et al. [59] reported a sensitivity of 100% for the 
combination of AACT and A1AT. Liu et al. [60] probed a combination 
of 5 proteins (CE, HRG, CD14, HGF, and C3), achieving a sensitivity 
of 79% and specificity of 72%, distinguishing early HCC from cirrhosis. 
The proteomic approach has thus proved useful in the search for 
biomarkers for early HCC diagnosis.

Conclusion
In this review, we have presented a flow chart of proteomics and 

the different quantitative methodologies applicable to identify protein 
alterations associated with HCC. We have also listed biomarker 
candidates gained by comparative 2DE and/or MS analysis of tissues 
or blood from HCC patients and various chronic liver diseases. 
Most researchers have proposed potential biomarkers without 
clinical verification. Therefore, putative biomarkers require clinical 
confirmation of sensitivity, specificity, reproducibility, and accuracy. 
However, because of the complex pathological mechanism of HCC, 
it is difficult to confirm a diagnosis of HCC with a single biomarker. 
Future studies should verify the insights from the existing literature and 
broaden them, defining the optimal mixture of surface markers that 
will identify HCC. Novel biomarkers can increase our understanding 
of oncogenesis, and may lead to better treatment strategies, with the 
ultimate goal of improving the prognosis of HCC patients.
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